Loading…

A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing

This paper shows a heterogeneous and parallel computing (PHC) methodology applied to the Security Constraint Optimal Power Flow problem (SCOPF). The methodology used an original decomposition of base and contingency cases for the SCOPF and solved the problem through constraint handling, droop contro...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodriguez, Diego, Gers, Juan M, Gomez, Diego, Garzon, Wilmer, Alvarez, David, Rivera, Sergio
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Rodriguez, Diego
Gers, Juan M
Gomez, Diego
Garzon, Wilmer
Alvarez, David
Rivera, Sergio
description This paper shows a heterogeneous and parallel computing (PHC) methodology applied to the Security Constraint Optimal Power Flow problem (SCOPF). The methodology used an original decomposition of base and contingency cases for the SCOPF and solved the problem through constraint handling, droop control and PV/PQ switching. PHC architecture was based on GPU and CPU to accelerate power flow calculations and parallelize contingency evaluations. The methodology was tested on power grids with sizes from 500 to 20,000 buses with promising results. The methodology allows power system optimization while guaranteeing power system security in N-1 scenarios in time frames appropriate for power system operation.
doi_str_mv 10.1109/PESGM48719.2022.9916694
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9916694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9916694</ieee_id><sourcerecordid>9916694</sourcerecordid><originalsourceid>FETCH-LOGICAL-i487-8478e54d9eb9c9de6573ad912939e72353f78da4d5e2b2508758bb11ace1763a3</originalsourceid><addsrcrecordid>eNotT81Kw0AYXAXBUvMEHtwXSMz-73cssalKSwPpvWyyX3Ul7ZYkKn17A3YuM4eZYYaQJ5ZnjOXwXC3r1UZawyDjOecZANMa5A1JwNhJKplbLsQtmTGQMgUQ4p4kw_CVT1DSaM1n5H1BSzeM9AXbeDzHIYwhnugGx8_o6RhpHbsfpHWxrUq6nAy_2KOnzYVWrnddhx0tptz3GE4fD-Tu4LoBkyvPya5c7orXdL1dvRWLdRqmsamVxqKSHrCBFjxqZYTzwDgIQMOFEgdjvZNeIW-4yq1RtmkYcy0yo4UTc_L4XxsQcX_uw9H1l_31vPgDZm1Nig</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing</title><source>IEEE Xplore All Conference Series</source><creator>Rodriguez, Diego ; Gers, Juan M ; Gomez, Diego ; Garzon, Wilmer ; Alvarez, David ; Rivera, Sergio</creator><creatorcontrib>Rodriguez, Diego ; Gers, Juan M ; Gomez, Diego ; Garzon, Wilmer ; Alvarez, David ; Rivera, Sergio</creatorcontrib><description>This paper shows a heterogeneous and parallel computing (PHC) methodology applied to the Security Constraint Optimal Power Flow problem (SCOPF). The methodology used an original decomposition of base and contingency cases for the SCOPF and solved the problem through constraint handling, droop control and PV/PQ switching. PHC architecture was based on GPU and CPU to accelerate power flow calculations and parallelize contingency evaluations. The methodology was tested on power grids with sizes from 500 to 20,000 buses with promising results. The methodology allows power system optimization while guaranteeing power system security in N-1 scenarios in time frames appropriate for power system operation.</description><identifier>EISSN: 1944-9933</identifier><identifier>EISBN: 9781665408233</identifier><identifier>EISBN: 1665408235</identifier><identifier>DOI: 10.1109/PESGM48719.2022.9916694</identifier><language>eng</language><publisher>IEEE</publisher><subject>Central Processing Unit ; Computer architecture ; Contingency management ; Graphics Processing Unit (GPU) ; Graphics processing units ; Parallel and Heterogeneous Computing (PHC) ; Parallel processing ; Proposals ; Security Constraint Optimal Power Flow (SCOPF) ; Switches</subject><ispartof>2022 IEEE Power &amp; Energy Society General Meeting (PESGM), 2022, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9916694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9916694$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodriguez, Diego</creatorcontrib><creatorcontrib>Gers, Juan M</creatorcontrib><creatorcontrib>Gomez, Diego</creatorcontrib><creatorcontrib>Garzon, Wilmer</creatorcontrib><creatorcontrib>Alvarez, David</creatorcontrib><creatorcontrib>Rivera, Sergio</creatorcontrib><title>A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing</title><title>2022 IEEE Power &amp; Energy Society General Meeting (PESGM)</title><addtitle>PESGM</addtitle><description>This paper shows a heterogeneous and parallel computing (PHC) methodology applied to the Security Constraint Optimal Power Flow problem (SCOPF). The methodology used an original decomposition of base and contingency cases for the SCOPF and solved the problem through constraint handling, droop control and PV/PQ switching. PHC architecture was based on GPU and CPU to accelerate power flow calculations and parallelize contingency evaluations. The methodology was tested on power grids with sizes from 500 to 20,000 buses with promising results. The methodology allows power system optimization while guaranteeing power system security in N-1 scenarios in time frames appropriate for power system operation.</description><subject>Central Processing Unit</subject><subject>Computer architecture</subject><subject>Contingency management</subject><subject>Graphics Processing Unit (GPU)</subject><subject>Graphics processing units</subject><subject>Parallel and Heterogeneous Computing (PHC)</subject><subject>Parallel processing</subject><subject>Proposals</subject><subject>Security Constraint Optimal Power Flow (SCOPF)</subject><subject>Switches</subject><issn>1944-9933</issn><isbn>9781665408233</isbn><isbn>1665408235</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT81Kw0AYXAXBUvMEHtwXSMz-73cssalKSwPpvWyyX3Ul7ZYkKn17A3YuM4eZYYaQJ5ZnjOXwXC3r1UZawyDjOecZANMa5A1JwNhJKplbLsQtmTGQMgUQ4p4kw_CVT1DSaM1n5H1BSzeM9AXbeDzHIYwhnugGx8_o6RhpHbsfpHWxrUq6nAy_2KOnzYVWrnddhx0tptz3GE4fD-Tu4LoBkyvPya5c7orXdL1dvRWLdRqmsamVxqKSHrCBFjxqZYTzwDgIQMOFEgdjvZNeIW-4yq1RtmkYcy0yo4UTc_L4XxsQcX_uw9H1l_31vPgDZm1Nig</recordid><startdate>20220717</startdate><enddate>20220717</enddate><creator>Rodriguez, Diego</creator><creator>Gers, Juan M</creator><creator>Gomez, Diego</creator><creator>Garzon, Wilmer</creator><creator>Alvarez, David</creator><creator>Rivera, Sergio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220717</creationdate><title>A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing</title><author>Rodriguez, Diego ; Gers, Juan M ; Gomez, Diego ; Garzon, Wilmer ; Alvarez, David ; Rivera, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i487-8478e54d9eb9c9de6573ad912939e72353f78da4d5e2b2508758bb11ace1763a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Central Processing Unit</topic><topic>Computer architecture</topic><topic>Contingency management</topic><topic>Graphics Processing Unit (GPU)</topic><topic>Graphics processing units</topic><topic>Parallel and Heterogeneous Computing (PHC)</topic><topic>Parallel processing</topic><topic>Proposals</topic><topic>Security Constraint Optimal Power Flow (SCOPF)</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Diego</creatorcontrib><creatorcontrib>Gers, Juan M</creatorcontrib><creatorcontrib>Gomez, Diego</creatorcontrib><creatorcontrib>Garzon, Wilmer</creatorcontrib><creatorcontrib>Alvarez, David</creatorcontrib><creatorcontrib>Rivera, Sergio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodriguez, Diego</au><au>Gers, Juan M</au><au>Gomez, Diego</au><au>Garzon, Wilmer</au><au>Alvarez, David</au><au>Rivera, Sergio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing</atitle><btitle>2022 IEEE Power &amp; Energy Society General Meeting (PESGM)</btitle><stitle>PESGM</stitle><date>2022-07-17</date><risdate>2022</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1944-9933</eissn><eisbn>9781665408233</eisbn><eisbn>1665408235</eisbn><abstract>This paper shows a heterogeneous and parallel computing (PHC) methodology applied to the Security Constraint Optimal Power Flow problem (SCOPF). The methodology used an original decomposition of base and contingency cases for the SCOPF and solved the problem through constraint handling, droop control and PV/PQ switching. PHC architecture was based on GPU and CPU to accelerate power flow calculations and parallelize contingency evaluations. The methodology was tested on power grids with sizes from 500 to 20,000 buses with promising results. The methodology allows power system optimization while guaranteeing power system security in N-1 scenarios in time frames appropriate for power system operation.</abstract><pub>IEEE</pub><doi>10.1109/PESGM48719.2022.9916694</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1944-9933
ispartof 2022 IEEE Power & Energy Society General Meeting (PESGM), 2022, p.1-5
issn 1944-9933
language eng
recordid cdi_ieee_primary_9916694
source IEEE Xplore All Conference Series
subjects Central Processing Unit
Computer architecture
Contingency management
Graphics Processing Unit (GPU)
Graphics processing units
Parallel and Heterogeneous Computing (PHC)
Parallel processing
Proposals
Security Constraint Optimal Power Flow (SCOPF)
Switches
title A Fast Decomposition Method to Solve SCOPF Empowered by Parallel Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Fast%20Decomposition%20Method%20to%20Solve%20SCOPF%20Empowered%20by%20Parallel%20Computing&rft.btitle=2022%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting%20(PESGM)&rft.au=Rodriguez,%20Diego&rft.date=2022-07-17&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1944-9933&rft_id=info:doi/10.1109/PESGM48719.2022.9916694&rft.eisbn=9781665408233&rft.eisbn_list=1665408235&rft_dat=%3Cieee_CHZPO%3E9916694%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i487-8478e54d9eb9c9de6573ad912939e72353f78da4d5e2b2508758bb11ace1763a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9916694&rfr_iscdi=true