Loading…

District Characteristics Analysis with Regional Garbage Amount Estimation Using Vehicle- Mounted Motion Sensors

Garbage is inextricably linked with our daily lives, and solid waste collection is one of the essential local government services. We investigate a method that estimates regional amounts of garbage using motion sensors mounted on garbage trucks. In this paper, we report the results of our analysis o...

Full description

Saved in:
Bibliographic Details
Main Authors: Kishino, Yasue, Shirai, Yoshinari, Takeuchi, Koh, Mizutani, Shin, Suyama, Takayuki, Naya, Futoshi, Ueda, Naonori
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Kishino, Yasue
Shirai, Yoshinari
Takeuchi, Koh
Mizutani, Shin
Suyama, Takayuki
Naya, Futoshi
Ueda, Naonori
description Garbage is inextricably linked with our daily lives, and solid waste collection is one of the essential local government services. We investigate a method that estimates regional amounts of garbage using motion sensors mounted on garbage trucks. In this paper, we report the results of our analysis of garbage amounts using national census data. By simply mounting motion sensors on garbage trucks and using activity recognition and multiple regression analysis, we were able to obtain significant and illuminating information.
doi_str_mv 10.1109/ISC255366.2022.9922487
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9922487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9922487</ieee_id><sourcerecordid>9922487</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-1105502076e068d17dd7bd617813a474fad42639f9c27f9d7c0ef1705809547c3</originalsourceid><addsrcrecordid>eNotkN1KAzEUhKMgWOo-gSB5ga0nyebvsqy1FiqCtd6WNMm2kXZXkoj07Y3aq4H5DoeZQeiOwIQQ0PeLVUs5Z0JMKFA60ZrSRskLVGmpiBC8UVwQcYlGVChZKyXgGlUpfQAAo8AklyM0PISUY7AZt3sTjc0-FiPYhKe9OZxSSPg75D1-9bswFAfPTdyancfT4_DVZzwrx0eTC8PrFPodfvf7YA--xs-_3Luif3Tl-zTEdIOuOnNIvjrrGK0fZ2_tU718mS_a6bIOhKhcl36cAwUpPAjliHRObp0gpRgzjWw64xoqmO60pbLTTlrwHZHAFWjeSMvG6Pb_b_Debz5jCRlPm_NE7Ads8lvB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>District Characteristics Analysis with Regional Garbage Amount Estimation Using Vehicle- Mounted Motion Sensors</title><source>IEEE Xplore All Conference Series</source><creator>Kishino, Yasue ; Shirai, Yoshinari ; Takeuchi, Koh ; Mizutani, Shin ; Suyama, Takayuki ; Naya, Futoshi ; Ueda, Naonori</creator><creatorcontrib>Kishino, Yasue ; Shirai, Yoshinari ; Takeuchi, Koh ; Mizutani, Shin ; Suyama, Takayuki ; Naya, Futoshi ; Ueda, Naonori</creatorcontrib><description>Garbage is inextricably linked with our daily lives, and solid waste collection is one of the essential local government services. We investigate a method that estimates regional amounts of garbage using motion sensors mounted on garbage trucks. In this paper, we report the results of our analysis of garbage amounts using national census data. By simply mounting motion sensors on garbage trucks and using activity recognition and multiple regression analysis, we were able to obtain significant and illuminating information.</description><identifier>EISSN: 2687-8860</identifier><identifier>EISBN: 9781665485616</identifier><identifier>EISBN: 1665485612</identifier><identifier>DOI: 10.1109/ISC255366.2022.9922487</identifier><language>eng</language><publisher>IEEE</publisher><subject>Activity recognition ; DNN ; Motion detection ; Multiple regressions ; Production ; Sensors ; Smart cities ; Sociology ; Waste materials ; Waste reduction</subject><ispartof>2022 IEEE International Smart Cities Conference (ISC2), 2022, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9922487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9922487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kishino, Yasue</creatorcontrib><creatorcontrib>Shirai, Yoshinari</creatorcontrib><creatorcontrib>Takeuchi, Koh</creatorcontrib><creatorcontrib>Mizutani, Shin</creatorcontrib><creatorcontrib>Suyama, Takayuki</creatorcontrib><creatorcontrib>Naya, Futoshi</creatorcontrib><creatorcontrib>Ueda, Naonori</creatorcontrib><title>District Characteristics Analysis with Regional Garbage Amount Estimation Using Vehicle- Mounted Motion Sensors</title><title>2022 IEEE International Smart Cities Conference (ISC2)</title><addtitle>ISC2</addtitle><description>Garbage is inextricably linked with our daily lives, and solid waste collection is one of the essential local government services. We investigate a method that estimates regional amounts of garbage using motion sensors mounted on garbage trucks. In this paper, we report the results of our analysis of garbage amounts using national census data. By simply mounting motion sensors on garbage trucks and using activity recognition and multiple regression analysis, we were able to obtain significant and illuminating information.</description><subject>Activity recognition</subject><subject>DNN</subject><subject>Motion detection</subject><subject>Multiple regressions</subject><subject>Production</subject><subject>Sensors</subject><subject>Smart cities</subject><subject>Sociology</subject><subject>Waste materials</subject><subject>Waste reduction</subject><issn>2687-8860</issn><isbn>9781665485616</isbn><isbn>1665485612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KAzEUhKMgWOo-gSB5ga0nyebvsqy1FiqCtd6WNMm2kXZXkoj07Y3aq4H5DoeZQeiOwIQQ0PeLVUs5Z0JMKFA60ZrSRskLVGmpiBC8UVwQcYlGVChZKyXgGlUpfQAAo8AklyM0PISUY7AZt3sTjc0-FiPYhKe9OZxSSPg75D1-9bswFAfPTdyancfT4_DVZzwrx0eTC8PrFPodfvf7YA--xs-_3Luif3Tl-zTEdIOuOnNIvjrrGK0fZ2_tU718mS_a6bIOhKhcl36cAwUpPAjliHRObp0gpRgzjWw64xoqmO60pbLTTlrwHZHAFWjeSMvG6Pb_b_Debz5jCRlPm_NE7Ads8lvB</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Kishino, Yasue</creator><creator>Shirai, Yoshinari</creator><creator>Takeuchi, Koh</creator><creator>Mizutani, Shin</creator><creator>Suyama, Takayuki</creator><creator>Naya, Futoshi</creator><creator>Ueda, Naonori</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220926</creationdate><title>District Characteristics Analysis with Regional Garbage Amount Estimation Using Vehicle- Mounted Motion Sensors</title><author>Kishino, Yasue ; Shirai, Yoshinari ; Takeuchi, Koh ; Mizutani, Shin ; Suyama, Takayuki ; Naya, Futoshi ; Ueda, Naonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-1105502076e068d17dd7bd617813a474fad42639f9c27f9d7c0ef1705809547c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity recognition</topic><topic>DNN</topic><topic>Motion detection</topic><topic>Multiple regressions</topic><topic>Production</topic><topic>Sensors</topic><topic>Smart cities</topic><topic>Sociology</topic><topic>Waste materials</topic><topic>Waste reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Kishino, Yasue</creatorcontrib><creatorcontrib>Shirai, Yoshinari</creatorcontrib><creatorcontrib>Takeuchi, Koh</creatorcontrib><creatorcontrib>Mizutani, Shin</creatorcontrib><creatorcontrib>Suyama, Takayuki</creatorcontrib><creatorcontrib>Naya, Futoshi</creatorcontrib><creatorcontrib>Ueda, Naonori</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kishino, Yasue</au><au>Shirai, Yoshinari</au><au>Takeuchi, Koh</au><au>Mizutani, Shin</au><au>Suyama, Takayuki</au><au>Naya, Futoshi</au><au>Ueda, Naonori</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>District Characteristics Analysis with Regional Garbage Amount Estimation Using Vehicle- Mounted Motion Sensors</atitle><btitle>2022 IEEE International Smart Cities Conference (ISC2)</btitle><stitle>ISC2</stitle><date>2022-09-26</date><risdate>2022</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2687-8860</eissn><eisbn>9781665485616</eisbn><eisbn>1665485612</eisbn><abstract>Garbage is inextricably linked with our daily lives, and solid waste collection is one of the essential local government services. We investigate a method that estimates regional amounts of garbage using motion sensors mounted on garbage trucks. In this paper, we report the results of our analysis of garbage amounts using national census data. By simply mounting motion sensors on garbage trucks and using activity recognition and multiple regression analysis, we were able to obtain significant and illuminating information.</abstract><pub>IEEE</pub><doi>10.1109/ISC255366.2022.9922487</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2687-8860
ispartof 2022 IEEE International Smart Cities Conference (ISC2), 2022, p.1-7
issn 2687-8860
language eng
recordid cdi_ieee_primary_9922487
source IEEE Xplore All Conference Series
subjects Activity recognition
DNN
Motion detection
Multiple regressions
Production
Sensors
Smart cities
Sociology
Waste materials
Waste reduction
title District Characteristics Analysis with Regional Garbage Amount Estimation Using Vehicle- Mounted Motion Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=District%20Characteristics%20Analysis%20with%20Regional%20Garbage%20Amount%20Estimation%20Using%20Vehicle-%20Mounted%20Motion%20Sensors&rft.btitle=2022%20IEEE%20International%20Smart%20Cities%20Conference%20(ISC2)&rft.au=Kishino,%20Yasue&rft.date=2022-09-26&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2687-8860&rft_id=info:doi/10.1109/ISC255366.2022.9922487&rft.eisbn=9781665485616&rft.eisbn_list=1665485612&rft_dat=%3Cieee_CHZPO%3E9922487%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-1105502076e068d17dd7bd617813a474fad42639f9c27f9d7c0ef1705809547c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9922487&rfr_iscdi=true