Loading…

The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective

The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that...

Full description

Saved in:
Bibliographic Details
Main Authors: Nguyen, Huu Du, Nguyen, Tai Quang Dinh, Thi, Hien Nguyen, Lap, Bui Quoc, Phan, Thi-Thu-Hong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Nguyen, Huu Du
Nguyen, Tai Quang Dinh
Thi, Hien Nguyen
Lap, Bui Quoc
Phan, Thi-Thu-Hong
description The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context.
doi_str_mv 10.1109/MAPR56351.2022.9924736
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9924736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9924736</ieee_id><sourcerecordid>9924736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-142580fbe1611b0cfa00f07903dc45f62d48404756c3777a80c13bd4408835483</originalsourceid><addsrcrecordid>eNotkN1KAkEYQKcgyMwnCGJeYO375n-7W8R-QMlK6VLG2W91Yl1ldpV8-4i8OhcHzsVh7B5hiAj5w7SYfWgjNQ4FCDHMc6GsNBfsBo3RyioEc8l6wlrIjNNwzQZt-w0AUoBCKXsszDfEFy3xXcWnPmxiQ3xCPjWxWfOiXu9S7Dbblle7xMdHXx9892e-fEeJvx98HbsTf21K-nnkBf88pCOduG9KPqPU7il08Ui37KrydUuDM_ts8TSej16yydvz66iYZBHRdRkqoR1UK0KDuIJQeYAKbA6yDEpXRpTKKVBWmyCttd5BQLkqlQLnpFZO9tndfzcS0XKf4tan0_L8RP4CwSVVHQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</title><source>IEEE Xplore All Conference Series</source><creator>Nguyen, Huu Du ; Nguyen, Tai Quang Dinh ; Thi, Hien Nguyen ; Lap, Bui Quoc ; Phan, Thi-Thu-Hong</creator><creatorcontrib>Nguyen, Huu Du ; Nguyen, Tai Quang Dinh ; Thi, Hien Nguyen ; Lap, Bui Quoc ; Phan, Thi-Thu-Hong</creatorcontrib><description>The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context.</description><identifier>EISSN: 2770-6850</identifier><identifier>EISBN: 1665474106</identifier><identifier>EISBN: 9781665474108</identifier><identifier>DOI: 10.1109/MAPR56351.2022.9924736</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Extra Tree ; Feature Selection ; Indexes ; Machine learning ; Machine learning algorithms ; Maximum likelihood estimation ; Pattern recognition ; Water quality ; Water Quality Index ; Water Quality Parameter</subject><ispartof>2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), 2022, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9924736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9924736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Huu Du</creatorcontrib><creatorcontrib>Nguyen, Tai Quang Dinh</creatorcontrib><creatorcontrib>Thi, Hien Nguyen</creatorcontrib><creatorcontrib>Lap, Bui Quoc</creatorcontrib><creatorcontrib>Phan, Thi-Thu-Hong</creatorcontrib><title>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</title><title>2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)</title><addtitle>MAPR</addtitle><description>The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context.</description><subject>Biological system modeling</subject><subject>Extra Tree</subject><subject>Feature Selection</subject><subject>Indexes</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Maximum likelihood estimation</subject><subject>Pattern recognition</subject><subject>Water quality</subject><subject>Water Quality Index</subject><subject>Water Quality Parameter</subject><issn>2770-6850</issn><isbn>1665474106</isbn><isbn>9781665474108</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KAkEYQKcgyMwnCGJeYO375n-7W8R-QMlK6VLG2W91Yl1ldpV8-4i8OhcHzsVh7B5hiAj5w7SYfWgjNQ4FCDHMc6GsNBfsBo3RyioEc8l6wlrIjNNwzQZt-w0AUoBCKXsszDfEFy3xXcWnPmxiQ3xCPjWxWfOiXu9S7Dbblle7xMdHXx9892e-fEeJvx98HbsTf21K-nnkBf88pCOduG9KPqPU7il08Ui37KrydUuDM_ts8TSej16yydvz66iYZBHRdRkqoR1UK0KDuIJQeYAKbA6yDEpXRpTKKVBWmyCttd5BQLkqlQLnpFZO9tndfzcS0XKf4tan0_L8RP4CwSVVHQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Nguyen, Huu Du</creator><creator>Nguyen, Tai Quang Dinh</creator><creator>Thi, Hien Nguyen</creator><creator>Lap, Bui Quoc</creator><creator>Phan, Thi-Thu-Hong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202210</creationdate><title>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</title><author>Nguyen, Huu Du ; Nguyen, Tai Quang Dinh ; Thi, Hien Nguyen ; Lap, Bui Quoc ; Phan, Thi-Thu-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-142580fbe1611b0cfa00f07903dc45f62d48404756c3777a80c13bd4408835483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological system modeling</topic><topic>Extra Tree</topic><topic>Feature Selection</topic><topic>Indexes</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Maximum likelihood estimation</topic><topic>Pattern recognition</topic><topic>Water quality</topic><topic>Water Quality Index</topic><topic>Water Quality Parameter</topic><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Huu Du</creatorcontrib><creatorcontrib>Nguyen, Tai Quang Dinh</creatorcontrib><creatorcontrib>Thi, Hien Nguyen</creatorcontrib><creatorcontrib>Lap, Bui Quoc</creatorcontrib><creatorcontrib>Phan, Thi-Thu-Hong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Huu Du</au><au>Nguyen, Tai Quang Dinh</au><au>Thi, Hien Nguyen</au><au>Lap, Bui Quoc</au><au>Phan, Thi-Thu-Hong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</atitle><btitle>2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)</btitle><stitle>MAPR</stitle><date>2022-10</date><risdate>2022</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2770-6850</eissn><eisbn>1665474106</eisbn><eisbn>9781665474108</eisbn><abstract>The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context.</abstract><pub>IEEE</pub><doi>10.1109/MAPR56351.2022.9924736</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2770-6850
ispartof 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), 2022, p.1-6
issn 2770-6850
language eng
recordid cdi_ieee_primary_9924736
source IEEE Xplore All Conference Series
subjects Biological system modeling
Extra Tree
Feature Selection
Indexes
Machine learning
Machine learning algorithms
Maximum likelihood estimation
Pattern recognition
Water quality
Water Quality Index
Water Quality Parameter
title The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Use%20of%20Machine%20Learning%20Algorithms%20for%20Evaluating%20Water%20Quality%20Index:%20A%20Survey%20and%20Perspective&rft.btitle=2022%20International%20Conference%20on%20Multimedia%20Analysis%20and%20Pattern%20Recognition%20(MAPR)&rft.au=Nguyen,%20Huu%20Du&rft.date=2022-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2770-6850&rft_id=info:doi/10.1109/MAPR56351.2022.9924736&rft.eisbn=1665474106&rft.eisbn_list=9781665474108&rft_dat=%3Cieee_CHZPO%3E9924736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-142580fbe1611b0cfa00f07903dc45f62d48404756c3777a80c13bd4408835483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9924736&rfr_iscdi=true