Loading…
The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective
The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nguyen, Huu Du Nguyen, Tai Quang Dinh Thi, Hien Nguyen Lap, Bui Quoc Phan, Thi-Thu-Hong |
description | The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context. |
doi_str_mv | 10.1109/MAPR56351.2022.9924736 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9924736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9924736</ieee_id><sourcerecordid>9924736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-142580fbe1611b0cfa00f07903dc45f62d48404756c3777a80c13bd4408835483</originalsourceid><addsrcrecordid>eNotkN1KAkEYQKcgyMwnCGJeYO375n-7W8R-QMlK6VLG2W91Yl1ldpV8-4i8OhcHzsVh7B5hiAj5w7SYfWgjNQ4FCDHMc6GsNBfsBo3RyioEc8l6wlrIjNNwzQZt-w0AUoBCKXsszDfEFy3xXcWnPmxiQ3xCPjWxWfOiXu9S7Dbblle7xMdHXx9892e-fEeJvx98HbsTf21K-nnkBf88pCOduG9KPqPU7il08Ui37KrydUuDM_ts8TSej16yydvz66iYZBHRdRkqoR1UK0KDuIJQeYAKbA6yDEpXRpTKKVBWmyCttd5BQLkqlQLnpFZO9tndfzcS0XKf4tan0_L8RP4CwSVVHQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</title><source>IEEE Xplore All Conference Series</source><creator>Nguyen, Huu Du ; Nguyen, Tai Quang Dinh ; Thi, Hien Nguyen ; Lap, Bui Quoc ; Phan, Thi-Thu-Hong</creator><creatorcontrib>Nguyen, Huu Du ; Nguyen, Tai Quang Dinh ; Thi, Hien Nguyen ; Lap, Bui Quoc ; Phan, Thi-Thu-Hong</creatorcontrib><description>The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context.</description><identifier>EISSN: 2770-6850</identifier><identifier>EISBN: 1665474106</identifier><identifier>EISBN: 9781665474108</identifier><identifier>DOI: 10.1109/MAPR56351.2022.9924736</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Extra Tree ; Feature Selection ; Indexes ; Machine learning ; Machine learning algorithms ; Maximum likelihood estimation ; Pattern recognition ; Water quality ; Water Quality Index ; Water Quality Parameter</subject><ispartof>2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), 2022, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9924736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9924736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Huu Du</creatorcontrib><creatorcontrib>Nguyen, Tai Quang Dinh</creatorcontrib><creatorcontrib>Thi, Hien Nguyen</creatorcontrib><creatorcontrib>Lap, Bui Quoc</creatorcontrib><creatorcontrib>Phan, Thi-Thu-Hong</creatorcontrib><title>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</title><title>2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)</title><addtitle>MAPR</addtitle><description>The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context.</description><subject>Biological system modeling</subject><subject>Extra Tree</subject><subject>Feature Selection</subject><subject>Indexes</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Maximum likelihood estimation</subject><subject>Pattern recognition</subject><subject>Water quality</subject><subject>Water Quality Index</subject><subject>Water Quality Parameter</subject><issn>2770-6850</issn><isbn>1665474106</isbn><isbn>9781665474108</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KAkEYQKcgyMwnCGJeYO375n-7W8R-QMlK6VLG2W91Yl1ldpV8-4i8OhcHzsVh7B5hiAj5w7SYfWgjNQ4FCDHMc6GsNBfsBo3RyioEc8l6wlrIjNNwzQZt-w0AUoBCKXsszDfEFy3xXcWnPmxiQ3xCPjWxWfOiXu9S7Dbblle7xMdHXx9892e-fEeJvx98HbsTf21K-nnkBf88pCOduG9KPqPU7il08Ui37KrydUuDM_ts8TSej16yydvz66iYZBHRdRkqoR1UK0KDuIJQeYAKbA6yDEpXRpTKKVBWmyCttd5BQLkqlQLnpFZO9tndfzcS0XKf4tan0_L8RP4CwSVVHQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Nguyen, Huu Du</creator><creator>Nguyen, Tai Quang Dinh</creator><creator>Thi, Hien Nguyen</creator><creator>Lap, Bui Quoc</creator><creator>Phan, Thi-Thu-Hong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202210</creationdate><title>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</title><author>Nguyen, Huu Du ; Nguyen, Tai Quang Dinh ; Thi, Hien Nguyen ; Lap, Bui Quoc ; Phan, Thi-Thu-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-142580fbe1611b0cfa00f07903dc45f62d48404756c3777a80c13bd4408835483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological system modeling</topic><topic>Extra Tree</topic><topic>Feature Selection</topic><topic>Indexes</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Maximum likelihood estimation</topic><topic>Pattern recognition</topic><topic>Water quality</topic><topic>Water Quality Index</topic><topic>Water Quality Parameter</topic><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Huu Du</creatorcontrib><creatorcontrib>Nguyen, Tai Quang Dinh</creatorcontrib><creatorcontrib>Thi, Hien Nguyen</creatorcontrib><creatorcontrib>Lap, Bui Quoc</creatorcontrib><creatorcontrib>Phan, Thi-Thu-Hong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Huu Du</au><au>Nguyen, Tai Quang Dinh</au><au>Thi, Hien Nguyen</au><au>Lap, Bui Quoc</au><au>Phan, Thi-Thu-Hong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective</atitle><btitle>2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)</btitle><stitle>MAPR</stitle><date>2022-10</date><risdate>2022</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2770-6850</eissn><eisbn>1665474106</eisbn><eisbn>9781665474108</eisbn><abstract>The quality of water is determined by its components, called the water parameters. The effect of each parameter on the water quality is different. To assess the water quality, sampling and measuring the value of these parameters are required. The water quality index (WQI) is a special indicator that integrates the value of many parameters into a single value. This value can be used to reflect effectively the quality of water. In this study, we present a survey on the application of machine learning (ML) method to estimate the WQI. A case study is also conducted to illustrate the use of the ML algorithm in the context.</abstract><pub>IEEE</pub><doi>10.1109/MAPR56351.2022.9924736</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2770-6850 |
ispartof | 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), 2022, p.1-6 |
issn | 2770-6850 |
language | eng |
recordid | cdi_ieee_primary_9924736 |
source | IEEE Xplore All Conference Series |
subjects | Biological system modeling Extra Tree Feature Selection Indexes Machine learning Machine learning algorithms Maximum likelihood estimation Pattern recognition Water quality Water Quality Index Water Quality Parameter |
title | The Use of Machine Learning Algorithms for Evaluating Water Quality Index: A Survey and Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Use%20of%20Machine%20Learning%20Algorithms%20for%20Evaluating%20Water%20Quality%20Index:%20A%20Survey%20and%20Perspective&rft.btitle=2022%20International%20Conference%20on%20Multimedia%20Analysis%20and%20Pattern%20Recognition%20(MAPR)&rft.au=Nguyen,%20Huu%20Du&rft.date=2022-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2770-6850&rft_id=info:doi/10.1109/MAPR56351.2022.9924736&rft.eisbn=1665474106&rft.eisbn_list=9781665474108&rft_dat=%3Cieee_CHZPO%3E9924736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-142580fbe1611b0cfa00f07903dc45f62d48404756c3777a80c13bd4408835483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9924736&rfr_iscdi=true |