Loading…

Multilinear Karhunen-Loève Transforms

Many recent applications involve distributed signal processing where a source signal is observed by, say, p local receiver-transmitters and then transmitted to a reconstruction center for the signal estimation. An optimal determination of the receiver-transmitters and the reconstruction center requi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2022, Vol.70, p.5148-5163
Main Authors: Howlett, Phil, Torokhti, Anatoli, Pudney, Peter, Soto-Quiros, Pablo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-57eeca4c7776750437ad6d5660b9fdd4ed01ee509be764ff248576b72e24a8003
cites cdi_FETCH-LOGICAL-c221t-57eeca4c7776750437ad6d5660b9fdd4ed01ee509be764ff248576b72e24a8003
container_end_page 5163
container_issue
container_start_page 5148
container_title IEEE transactions on signal processing
container_volume 70
creator Howlett, Phil
Torokhti, Anatoli
Pudney, Peter
Soto-Quiros, Pablo
description Many recent applications involve distributed signal processing where a source signal is observed by, say, p local receiver-transmitters and then transmitted to a reconstruction center for the signal estimation. An optimal determination of the receiver-transmitters and the reconstruction center requires extensions of the Karhunen-Loève transform (KLT) and Wiener filter. In this paper, the associated extensions are provided. The proposed optimal multilinear filter is a generalization of the Wiener filter and consists of p terms where each term is associated with a local receiver-transmitter. For the case when the receiver-transmitters must reduce the dimensionality of the observed signals, two associated techniques are proposed: the multilinear KLT-1 and multilinear KLT-2. The multilinear KLT-1 is constructed in terms of pseudo-inverse matrices and therefore always exists. The multilinear KLT-2 is given in terms of non-singular matrices and it may provide a higher associated accuracy than that of the multilinear KLT-1. All three proposed techniques are based on a reduction of the original problem to p separate error minimization problems with small matrices. This allows us to provide a fast computational procedure for the multilinear filter, and decrease the computational cost for constructing the multilinear KLT-1 and KLT-2.
doi_str_mv 10.1109/TSP.2022.3214684
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9927238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9927238</ieee_id><sourcerecordid>2734387251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-57eeca4c7776750437ad6d5660b9fdd4ed01ee509be764ff248576b72e24a8003</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKt7wU1BcDf1JrnJnSxF_MOKghXchXTmDk5pZ2rSEXwj38MXc0qLq3sW3zkXPiFOJYylBHc5fX0ZK1BqrJVEm-OeGEiHMgMku99nMDozOb0fiqOU5gAS0dmBuHjqFut6UTcc4ugxxI-u4SabtL8_XzyaxtCkqo3LdCwOqrBIfLK7Q_F2ezO9vs8mz3cP11eTrFBKrjNDzEXAgogsGUBNobSlsRZmripL5BIkswE3Y7JYVQpzQ3ZGihWGHEAPxfl2dxXbz47T2s_bLjb9S69Io85JGdlTsKWK2KYUufKrWC9D_PYS_MaG7234jQ2_s9FXzraVmpn_cecUKZ3rPy5oWlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387251</pqid></control><display><type>article</type><title>Multilinear Karhunen-Loève Transforms</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Howlett, Phil ; Torokhti, Anatoli ; Pudney, Peter ; Soto-Quiros, Pablo</creator><creatorcontrib>Howlett, Phil ; Torokhti, Anatoli ; Pudney, Peter ; Soto-Quiros, Pablo</creatorcontrib><description><![CDATA[Many recent applications involve distributed signal processing where a source signal is observed by, say, <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> local receiver-transmitters and then transmitted to a reconstruction center for the signal estimation. An optimal determination of the receiver-transmitters and the reconstruction center requires extensions of the Karhunen-Loève transform (KLT) and Wiener filter. In this paper, the associated extensions are provided. The proposed optimal multilinear filter is a generalization of the Wiener filter and consists of <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> terms where each term is associated with a local receiver-transmitter. For the case when the receiver-transmitters must reduce the dimensionality of the observed signals, two associated techniques are proposed: the multilinear KLT-1 and multilinear KLT-2. The multilinear KLT-1 is constructed in terms of pseudo-inverse matrices and therefore always exists. The multilinear KLT-2 is given in terms of non-singular matrices and it may provide a higher associated accuracy than that of the multilinear KLT-1. All three proposed techniques are based on a reduction of the original problem to <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> separate error minimization problems with small matrices. This allows us to provide a fast computational procedure for the multilinear filter, and decrease the computational cost for constructing the multilinear KLT-1 and KLT-2.]]></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2022.3214684</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computing costs ; Covariance matrices ; Estimation ; Image reconstruction ; Karhunen-Loève transform ; Loss measurement ; Matrix decomposition ; Optimization ; Principal component analysis ; Reconstruction ; Signal processing ; Transforms ; Transmitters ; Wiener filtering</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.5148-5163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-57eeca4c7776750437ad6d5660b9fdd4ed01ee509be764ff248576b72e24a8003</citedby><cites>FETCH-LOGICAL-c221t-57eeca4c7776750437ad6d5660b9fdd4ed01ee509be764ff248576b72e24a8003</cites><orcidid>0000-0001-5596-5473 ; 0000-0003-2903-3116 ; 0000-0002-8337-4678 ; 0000-0003-2382-8137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9927238$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Howlett, Phil</creatorcontrib><creatorcontrib>Torokhti, Anatoli</creatorcontrib><creatorcontrib>Pudney, Peter</creatorcontrib><creatorcontrib>Soto-Quiros, Pablo</creatorcontrib><title>Multilinear Karhunen-Loève Transforms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description><![CDATA[Many recent applications involve distributed signal processing where a source signal is observed by, say, <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> local receiver-transmitters and then transmitted to a reconstruction center for the signal estimation. An optimal determination of the receiver-transmitters and the reconstruction center requires extensions of the Karhunen-Loève transform (KLT) and Wiener filter. In this paper, the associated extensions are provided. The proposed optimal multilinear filter is a generalization of the Wiener filter and consists of <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> terms where each term is associated with a local receiver-transmitter. For the case when the receiver-transmitters must reduce the dimensionality of the observed signals, two associated techniques are proposed: the multilinear KLT-1 and multilinear KLT-2. The multilinear KLT-1 is constructed in terms of pseudo-inverse matrices and therefore always exists. The multilinear KLT-2 is given in terms of non-singular matrices and it may provide a higher associated accuracy than that of the multilinear KLT-1. All three proposed techniques are based on a reduction of the original problem to <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> separate error minimization problems with small matrices. This allows us to provide a fast computational procedure for the multilinear filter, and decrease the computational cost for constructing the multilinear KLT-1 and KLT-2.]]></description><subject>Computing costs</subject><subject>Covariance matrices</subject><subject>Estimation</subject><subject>Image reconstruction</subject><subject>Karhunen-Loève transform</subject><subject>Loss measurement</subject><subject>Matrix decomposition</subject><subject>Optimization</subject><subject>Principal component analysis</subject><subject>Reconstruction</subject><subject>Signal processing</subject><subject>Transforms</subject><subject>Transmitters</subject><subject>Wiener filtering</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKt7wU1BcDf1JrnJnSxF_MOKghXchXTmDk5pZ2rSEXwj38MXc0qLq3sW3zkXPiFOJYylBHc5fX0ZK1BqrJVEm-OeGEiHMgMku99nMDozOb0fiqOU5gAS0dmBuHjqFut6UTcc4ugxxI-u4SabtL8_XzyaxtCkqo3LdCwOqrBIfLK7Q_F2ezO9vs8mz3cP11eTrFBKrjNDzEXAgogsGUBNobSlsRZmripL5BIkswE3Y7JYVQpzQ3ZGihWGHEAPxfl2dxXbz47T2s_bLjb9S69Io85JGdlTsKWK2KYUufKrWC9D_PYS_MaG7234jQ2_s9FXzraVmpn_cecUKZ3rPy5oWlQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Howlett, Phil</creator><creator>Torokhti, Anatoli</creator><creator>Pudney, Peter</creator><creator>Soto-Quiros, Pablo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5596-5473</orcidid><orcidid>https://orcid.org/0000-0003-2903-3116</orcidid><orcidid>https://orcid.org/0000-0002-8337-4678</orcidid><orcidid>https://orcid.org/0000-0003-2382-8137</orcidid></search><sort><creationdate>2022</creationdate><title>Multilinear Karhunen-Loève Transforms</title><author>Howlett, Phil ; Torokhti, Anatoli ; Pudney, Peter ; Soto-Quiros, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-57eeca4c7776750437ad6d5660b9fdd4ed01ee509be764ff248576b72e24a8003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computing costs</topic><topic>Covariance matrices</topic><topic>Estimation</topic><topic>Image reconstruction</topic><topic>Karhunen-Loève transform</topic><topic>Loss measurement</topic><topic>Matrix decomposition</topic><topic>Optimization</topic><topic>Principal component analysis</topic><topic>Reconstruction</topic><topic>Signal processing</topic><topic>Transforms</topic><topic>Transmitters</topic><topic>Wiener filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howlett, Phil</creatorcontrib><creatorcontrib>Torokhti, Anatoli</creatorcontrib><creatorcontrib>Pudney, Peter</creatorcontrib><creatorcontrib>Soto-Quiros, Pablo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howlett, Phil</au><au>Torokhti, Anatoli</au><au>Pudney, Peter</au><au>Soto-Quiros, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilinear Karhunen-Loève Transforms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>5148</spage><epage>5163</epage><pages>5148-5163</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract><![CDATA[Many recent applications involve distributed signal processing where a source signal is observed by, say, <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> local receiver-transmitters and then transmitted to a reconstruction center for the signal estimation. An optimal determination of the receiver-transmitters and the reconstruction center requires extensions of the Karhunen-Loève transform (KLT) and Wiener filter. In this paper, the associated extensions are provided. The proposed optimal multilinear filter is a generalization of the Wiener filter and consists of <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> terms where each term is associated with a local receiver-transmitter. For the case when the receiver-transmitters must reduce the dimensionality of the observed signals, two associated techniques are proposed: the multilinear KLT-1 and multilinear KLT-2. The multilinear KLT-1 is constructed in terms of pseudo-inverse matrices and therefore always exists. The multilinear KLT-2 is given in terms of non-singular matrices and it may provide a higher associated accuracy than that of the multilinear KLT-1. All three proposed techniques are based on a reduction of the original problem to <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> separate error minimization problems with small matrices. This allows us to provide a fast computational procedure for the multilinear filter, and decrease the computational cost for constructing the multilinear KLT-1 and KLT-2.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2022.3214684</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5596-5473</orcidid><orcidid>https://orcid.org/0000-0003-2903-3116</orcidid><orcidid>https://orcid.org/0000-0002-8337-4678</orcidid><orcidid>https://orcid.org/0000-0003-2382-8137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2022, Vol.70, p.5148-5163
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_9927238
source IEEE Electronic Library (IEL) Journals
subjects Computing costs
Covariance matrices
Estimation
Image reconstruction
Karhunen-Loève transform
Loss measurement
Matrix decomposition
Optimization
Principal component analysis
Reconstruction
Signal processing
Transforms
Transmitters
Wiener filtering
title Multilinear Karhunen-Loève Transforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilinear%20Karhunen-Lo%C3%A8ve%20Transforms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Howlett,%20Phil&rft.date=2022&rft.volume=70&rft.spage=5148&rft.epage=5163&rft.pages=5148-5163&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2022.3214684&rft_dat=%3Cproquest_ieee_%3E2734387251%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-57eeca4c7776750437ad6d5660b9fdd4ed01ee509be764ff248576b72e24a8003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734387251&rft_id=info:pmid/&rft_ieee_id=9927238&rfr_iscdi=true