Loading…
Workflow Scheduling in Serverless Edge Computing for the Industrial Internet of Things: A Learning Approach
Serverless edge computing is seen as a promising enabler to execute differentiated Industrial Internet of Things (IIoT) applications without managing the underlying servers and clusters. In IIoT serverless edge computing, IIoT workflow scheduling for cloud-edge collaborative processing is closely re...
Saved in:
Published in: | IEEE transactions on industrial informatics 2023-07, Vol.19 (7), p.8242-8252 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Serverless edge computing is seen as a promising enabler to execute differentiated Industrial Internet of Things (IIoT) applications without managing the underlying servers and clusters. In IIoT serverless edge computing, IIoT workflow scheduling for cloud-edge collaborative processing is closely related to the service quality of users. However, serverless functions decomposed by IIoT applications are limited in their deployment at the edge due to the resource-constrained nature of edge infrastructures. In addition, the scheduling of complex IIoT applications supported by serverless computing is more challenging. Therefore, considering the limited function deployment and the complex dependencies of serverless workflows, we model the workflow application as directed acyclic graph and formulate the scheduling problem as a multiobjective optimization problem. A dueling double deep Q-network-based solution is proposed to make scheduling decisions under dynamically changing systems. Extensive simulation experiments are conducted to validate the superiority of the proposed scheme. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2022.3217477 |