Loading…

Device, Circuit, and System Design for Enabling Giga-Hertz Large-Area Electronics

Recent progress has substantially increased the operating frequency of large-area electronic (LAE) devices. Their integration into circuits has enabled unprecedented system-level capabilities, toward future wireless applications for the Internet of Things (IoT) and 5G/6G. These exploit large dimensi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE open journal of solid-state circuits 2022, Vol.2, p.177-192
Main Authors: Ma, Yue, Wu, Can, Fata, Nicholas M., Kumar, Prakhar, Wagner, Sigurd, Sturm, James C., Verma, Naveen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent progress has substantially increased the operating frequency of large-area electronic (LAE) devices. Their integration into circuits has enabled unprecedented system-level capabilities, toward future wireless applications for the Internet of Things (IoT) and 5G/6G. These exploit large dimensions and flexible form factors. In this work, we focus on giga-Hertz (GHz) zinc-oxide (ZnO) thin-film transistors (TFTs) as a foundational device for enabling GHz LAE circuits and systems. To further understand their operation and limits in the newly possible frequency regime, we incorporate the effects of temperature and of non-quasi-static (NQS) physics into the device models. We then analyze operation including these effects on a fundamental circuit block, the cross-coupled inductor-capacitor (LC) oscillator. It is used in representative LAE systems, namely, a 13.56-MHz radio-frequency identification (RFID) reader array for near-field energy transfer, and a 1-GHz phased array for far-field radiation beam steering. The co-design of devices, circuits, and systems is essential for achieving flexible and meter-scale monolithic-integrated LAE wireless systems. For these, understanding temperature limitations and the NQS effect is crucial.
ISSN:2644-1349
2644-1349
DOI:10.1109/OJSSCS.2022.3217759