Loading…

Accounting for large jobs for a single-processor online model

The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Tarasova, Elizaveta, Grigoreva, Natalia
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Tarasova, Elizaveta
Grigoreva, Natalia
description The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%.
doi_str_mv 10.1109/ICOA55659.2022.9934593
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9934593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9934593</ieee_id><sourcerecordid>9934593</sourcerecordid><originalsourceid>FETCH-LOGICAL-i484-2d9c67da23fb0ddd4ec74d2ec3f849c946b50a29ed6357aa92f12c040aa4133</originalsourceid><addsrcrecordid>eNotT8lqwzAUVAuFpkm-oFD8A3afnhZLhx6M6RIIBEruQZaeg4NiBas99O9r2pxmg2GGsScOFedgnzftrlFKK1shIFbWCqmsuGEPXGsla224uWULnEmphTH3bJ3zCQAEguTCLNhL4336Hr-G8Vj0aSqim45UnFKX_6Qr8pxEKi9T8pTzbKUxDiMV5xQorthd72Km9RWX7PPtdd9-lNvd-6ZttuUgjSwxWK_r4FD0HYQQJPlaBiQveiOtt1J3ChxaClqo2jmLPUcPEpybR4ole_wvHYjocJmGs5t-Dter4hcuC0jd</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accounting for large jobs for a single-processor online model</title><source>IEEE Xplore All Conference Series</source><creator>Tarasova, Elizaveta ; Grigoreva, Natalia</creator><creatorcontrib>Tarasova, Elizaveta ; Grigoreva, Natalia</creatorcontrib><description>The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%.</description><identifier>EISSN: 2768-6388</identifier><identifier>EISBN: 1665476818</identifier><identifier>EISBN: 9781665476812</identifier><identifier>DOI: 10.1109/ICOA55659.2022.9934593</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; deadlines ; Delays ; Linear programming ; Minimization ; minimization of the total delay ; online scheduling model ; Processor scheduling ; Schedules ; Scheduling ; single processor model</subject><ispartof>2022 8th International Conference on Optimization and Applications (ICOA), 2022, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6621-0911 ; 0000-0002-0542-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9934593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9934593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tarasova, Elizaveta</creatorcontrib><creatorcontrib>Grigoreva, Natalia</creatorcontrib><title>Accounting for large jobs for a single-processor online model</title><title>2022 8th International Conference on Optimization and Applications (ICOA)</title><addtitle>ICOA</addtitle><description>The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%.</description><subject>Adaptation models</subject><subject>deadlines</subject><subject>Delays</subject><subject>Linear programming</subject><subject>Minimization</subject><subject>minimization of the total delay</subject><subject>online scheduling model</subject><subject>Processor scheduling</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>single processor model</subject><issn>2768-6388</issn><isbn>1665476818</isbn><isbn>9781665476812</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8lqwzAUVAuFpkm-oFD8A3afnhZLhx6M6RIIBEruQZaeg4NiBas99O9r2pxmg2GGsScOFedgnzftrlFKK1shIFbWCqmsuGEPXGsla224uWULnEmphTH3bJ3zCQAEguTCLNhL4336Hr-G8Vj0aSqim45UnFKX_6Qr8pxEKi9T8pTzbKUxDiMV5xQorthd72Km9RWX7PPtdd9-lNvd-6ZttuUgjSwxWK_r4FD0HYQQJPlaBiQveiOtt1J3ChxaClqo2jmLPUcPEpybR4ole_wvHYjocJmGs5t-Dter4hcuC0jd</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Tarasova, Elizaveta</creator><creator>Grigoreva, Natalia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><orcidid>https://orcid.org/0000-0002-6621-0911</orcidid><orcidid>https://orcid.org/0000-0002-0542-983X</orcidid></search><sort><creationdate>20221006</creationdate><title>Accounting for large jobs for a single-processor online model</title><author>Tarasova, Elizaveta ; Grigoreva, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i484-2d9c67da23fb0ddd4ec74d2ec3f849c946b50a29ed6357aa92f12c040aa4133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>deadlines</topic><topic>Delays</topic><topic>Linear programming</topic><topic>Minimization</topic><topic>minimization of the total delay</topic><topic>online scheduling model</topic><topic>Processor scheduling</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>single processor model</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarasova, Elizaveta</creatorcontrib><creatorcontrib>Grigoreva, Natalia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarasova, Elizaveta</au><au>Grigoreva, Natalia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accounting for large jobs for a single-processor online model</atitle><btitle>2022 8th International Conference on Optimization and Applications (ICOA)</btitle><stitle>ICOA</stitle><date>2022-10-06</date><risdate>2022</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2768-6388</eissn><eisbn>1665476818</eisbn><eisbn>9781665476812</eisbn><abstract>The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%.</abstract><pub>IEEE</pub><doi>10.1109/ICOA55659.2022.9934593</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6621-0911</orcidid><orcidid>https://orcid.org/0000-0002-0542-983X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2768-6388
ispartof 2022 8th International Conference on Optimization and Applications (ICOA), 2022, p.1-5
issn 2768-6388
language eng
recordid cdi_ieee_primary_9934593
source IEEE Xplore All Conference Series
subjects Adaptation models
deadlines
Delays
Linear programming
Minimization
minimization of the total delay
online scheduling model
Processor scheduling
Schedules
Scheduling
single processor model
title Accounting for large jobs for a single-processor online model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accounting%20for%20large%20jobs%20for%20a%20single-processor%20online%20model&rft.btitle=2022%208th%20International%20Conference%20on%20Optimization%20and%20Applications%20(ICOA)&rft.au=Tarasova,%20Elizaveta&rft.date=2022-10-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2768-6388&rft_id=info:doi/10.1109/ICOA55659.2022.9934593&rft.eisbn=1665476818&rft.eisbn_list=9781665476812&rft_dat=%3Cieee_CHZPO%3E9934593%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i484-2d9c67da23fb0ddd4ec74d2ec3f849c946b50a29ed6357aa92f12c040aa4133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9934593&rfr_iscdi=true