Loading…
Accounting for large jobs for a single-processor online model
The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison wit...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tarasova, Elizaveta Grigoreva, Natalia |
description | The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%. |
doi_str_mv | 10.1109/ICOA55659.2022.9934593 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9934593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9934593</ieee_id><sourcerecordid>9934593</sourcerecordid><originalsourceid>FETCH-LOGICAL-i484-2d9c67da23fb0ddd4ec74d2ec3f849c946b50a29ed6357aa92f12c040aa4133</originalsourceid><addsrcrecordid>eNotT8lqwzAUVAuFpkm-oFD8A3afnhZLhx6M6RIIBEruQZaeg4NiBas99O9r2pxmg2GGsScOFedgnzftrlFKK1shIFbWCqmsuGEPXGsla224uWULnEmphTH3bJ3zCQAEguTCLNhL4336Hr-G8Vj0aSqim45UnFKX_6Qr8pxEKi9T8pTzbKUxDiMV5xQorthd72Km9RWX7PPtdd9-lNvd-6ZttuUgjSwxWK_r4FD0HYQQJPlaBiQveiOtt1J3ChxaClqo2jmLPUcPEpybR4ole_wvHYjocJmGs5t-Dter4hcuC0jd</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accounting for large jobs for a single-processor online model</title><source>IEEE Xplore All Conference Series</source><creator>Tarasova, Elizaveta ; Grigoreva, Natalia</creator><creatorcontrib>Tarasova, Elizaveta ; Grigoreva, Natalia</creatorcontrib><description>The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%.</description><identifier>EISSN: 2768-6388</identifier><identifier>EISBN: 1665476818</identifier><identifier>EISBN: 9781665476812</identifier><identifier>DOI: 10.1109/ICOA55659.2022.9934593</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; deadlines ; Delays ; Linear programming ; Minimization ; minimization of the total delay ; online scheduling model ; Processor scheduling ; Schedules ; Scheduling ; single processor model</subject><ispartof>2022 8th International Conference on Optimization and Applications (ICOA), 2022, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6621-0911 ; 0000-0002-0542-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9934593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9934593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tarasova, Elizaveta</creatorcontrib><creatorcontrib>Grigoreva, Natalia</creatorcontrib><title>Accounting for large jobs for a single-processor online model</title><title>2022 8th International Conference on Optimization and Applications (ICOA)</title><addtitle>ICOA</addtitle><description>The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%.</description><subject>Adaptation models</subject><subject>deadlines</subject><subject>Delays</subject><subject>Linear programming</subject><subject>Minimization</subject><subject>minimization of the total delay</subject><subject>online scheduling model</subject><subject>Processor scheduling</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>single processor model</subject><issn>2768-6388</issn><isbn>1665476818</isbn><isbn>9781665476812</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8lqwzAUVAuFpkm-oFD8A3afnhZLhx6M6RIIBEruQZaeg4NiBas99O9r2pxmg2GGsScOFedgnzftrlFKK1shIFbWCqmsuGEPXGsla224uWULnEmphTH3bJ3zCQAEguTCLNhL4336Hr-G8Vj0aSqim45UnFKX_6Qr8pxEKi9T8pTzbKUxDiMV5xQorthd72Km9RWX7PPtdd9-lNvd-6ZttuUgjSwxWK_r4FD0HYQQJPlaBiQveiOtt1J3ChxaClqo2jmLPUcPEpybR4ole_wvHYjocJmGs5t-Dter4hcuC0jd</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Tarasova, Elizaveta</creator><creator>Grigoreva, Natalia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><orcidid>https://orcid.org/0000-0002-6621-0911</orcidid><orcidid>https://orcid.org/0000-0002-0542-983X</orcidid></search><sort><creationdate>20221006</creationdate><title>Accounting for large jobs for a single-processor online model</title><author>Tarasova, Elizaveta ; Grigoreva, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i484-2d9c67da23fb0ddd4ec74d2ec3f849c946b50a29ed6357aa92f12c040aa4133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>deadlines</topic><topic>Delays</topic><topic>Linear programming</topic><topic>Minimization</topic><topic>minimization of the total delay</topic><topic>online scheduling model</topic><topic>Processor scheduling</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>single processor model</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarasova, Elizaveta</creatorcontrib><creatorcontrib>Grigoreva, Natalia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarasova, Elizaveta</au><au>Grigoreva, Natalia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accounting for large jobs for a single-processor online model</atitle><btitle>2022 8th International Conference on Optimization and Applications (ICOA)</btitle><stitle>ICOA</stitle><date>2022-10-06</date><risdate>2022</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2768-6388</eissn><eisbn>1665476818</eisbn><eisbn>9781665476812</eisbn><abstract>The paper proposes for consideration an online scheduling model for single processor with a deadlines and minimization of the total delay. A new LJSF algorithm has been proposed that takes into account the size of the jobs entering the process and is adapted to cases of large jobs. In comparison with existing algorithms, LJSF improved the results on average by 3% - 20% in more than 40% of examples for different testing groups, while in other cases the values of the objective functions were close with a deviation of no more than 2%.</abstract><pub>IEEE</pub><doi>10.1109/ICOA55659.2022.9934593</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6621-0911</orcidid><orcidid>https://orcid.org/0000-0002-0542-983X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2768-6388 |
ispartof | 2022 8th International Conference on Optimization and Applications (ICOA), 2022, p.1-5 |
issn | 2768-6388 |
language | eng |
recordid | cdi_ieee_primary_9934593 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models deadlines Delays Linear programming Minimization minimization of the total delay online scheduling model Processor scheduling Schedules Scheduling single processor model |
title | Accounting for large jobs for a single-processor online model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accounting%20for%20large%20jobs%20for%20a%20single-processor%20online%20model&rft.btitle=2022%208th%20International%20Conference%20on%20Optimization%20and%20Applications%20(ICOA)&rft.au=Tarasova,%20Elizaveta&rft.date=2022-10-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2768-6388&rft_id=info:doi/10.1109/ICOA55659.2022.9934593&rft.eisbn=1665476818&rft.eisbn_list=9781665476812&rft_dat=%3Cieee_CHZPO%3E9934593%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i484-2d9c67da23fb0ddd4ec74d2ec3f849c946b50a29ed6357aa92f12c040aa4133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9934593&rfr_iscdi=true |