Loading…
EchoWrite-SNN: Acoustic Based Air-Written Shape Recognition Using Spiking Neural Networks
In this paper, we propose EchoWrite-SNN, a robust edge compatible air-writing recognition system (used in applications such as AR/VR, HRI etc.) based on principles of SONAR and neuromorphic computing. The bare finger movements in air are captured by a pair of commonly available speaker-microphone pa...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1071 |
container_issue | |
container_start_page | 1067 |
container_title | |
container_volume | |
creator | George, Arun M Gigie, Andrew Kumar, A Anil Dey, Sounak Pal, Arpan Aditi, K |
description | In this paper, we propose EchoWrite-SNN, a robust edge compatible air-writing recognition system (used in applications such as AR/VR, HRI etc.) based on principles of SONAR and neuromorphic computing. The bare finger movements in air are captured by a pair of commonly available speaker-microphone pair. A new tracking algorithm based on windowed difference cross-correlation and ESPRIT is employed which shows better tracking accuracy compared to state-of-the-art methods with a median tracking error of only 3.31mm. To classify these air-written shapes, a 5-layer CNN is trained and then converted to a Spiking Neural Network (SNN) using ANN-to-SNN conversion technique to reap the benefits of low power neuromorphic computing on edge. Experimental results show that the converted SNN achieves 92% accuracy (a mere 3% less than the CNN) while showing 4.4 × reduction in number of operations compared to CNN resulting in further energy benefit when run on actual neuromorphic computation platforms. |
doi_str_mv | 10.1109/ISCAS48785.2022.9937951 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9937951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9937951</ieee_id><sourcerecordid>9937951</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-b2bde61a77f00fc783d9d2fcf6ff5cf0f3af7cbfddc7823d525d44ac76aab06e3</originalsourceid><addsrcrecordid>eNotkMtKw0AARUdBsNZ-gQvnBxLnkXnEXQytFkoEYxFXZTKPdmxNwkyK-Pem2NVZHLhwLgD3GKUYo_xhWZdFnUkhWUoQIWmeU5EzfAFmuZCYc5bJTDJ2CSYEM5lgRtg1uInxCyGCECcT8DnXu-4j-MEmdVU9wkJ3xzh4DZ9UtAYWPiQnO9gW1jvVW_hmdbdt_eC7Fq6jb7ew7v3-xMoegzqMGH66sI-34MqpQ7SzM6dgvZi_ly_J6vV5WRarxGNKh6QhjbEcKyEcQk4LSU1uiNOOO8e0Q44qJ3TjjBkdoWZMMFmmtOBKNYhbOgV3_7veWrvpg_9W4XdzfoL-ATpeVT0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EchoWrite-SNN: Acoustic Based Air-Written Shape Recognition Using Spiking Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>George, Arun M ; Gigie, Andrew ; Kumar, A Anil ; Dey, Sounak ; Pal, Arpan ; Aditi, K</creator><creatorcontrib>George, Arun M ; Gigie, Andrew ; Kumar, A Anil ; Dey, Sounak ; Pal, Arpan ; Aditi, K</creatorcontrib><description>In this paper, we propose EchoWrite-SNN, a robust edge compatible air-writing recognition system (used in applications such as AR/VR, HRI etc.) based on principles of SONAR and neuromorphic computing. The bare finger movements in air are captured by a pair of commonly available speaker-microphone pair. A new tracking algorithm based on windowed difference cross-correlation and ESPRIT is employed which shows better tracking accuracy compared to state-of-the-art methods with a median tracking error of only 3.31mm. To classify these air-written shapes, a 5-layer CNN is trained and then converted to a Spiking Neural Network (SNN) using ANN-to-SNN conversion technique to reap the benefits of low power neuromorphic computing on edge. Experimental results show that the converted SNN achieves 92% accuracy (a mere 3% less than the CNN) while showing 4.4 × reduction in number of operations compared to CNN resulting in further energy benefit when run on actual neuromorphic computation platforms.</description><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 9781665484855</identifier><identifier>EISBN: 1665484853</identifier><identifier>DOI: 10.1109/ISCAS48785.2022.9937951</identifier><language>eng</language><publisher>IEEE</publisher><subject>air-writing ; finger tracking ; Neural networks ; neuromorphic computing ; Neuromorphic engineering ; Performance evaluation ; Shape ; SONAR ; Sonar applications ; Spiking neural network ; Tracking ; Ultrasonic imaging</subject><ispartof>2022 IEEE International Symposium on Circuits and Systems (ISCAS), 2022, p.1067-1071</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9937951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9937951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>George, Arun M</creatorcontrib><creatorcontrib>Gigie, Andrew</creatorcontrib><creatorcontrib>Kumar, A Anil</creatorcontrib><creatorcontrib>Dey, Sounak</creatorcontrib><creatorcontrib>Pal, Arpan</creatorcontrib><creatorcontrib>Aditi, K</creatorcontrib><title>EchoWrite-SNN: Acoustic Based Air-Written Shape Recognition Using Spiking Neural Networks</title><title>2022 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>In this paper, we propose EchoWrite-SNN, a robust edge compatible air-writing recognition system (used in applications such as AR/VR, HRI etc.) based on principles of SONAR and neuromorphic computing. The bare finger movements in air are captured by a pair of commonly available speaker-microphone pair. A new tracking algorithm based on windowed difference cross-correlation and ESPRIT is employed which shows better tracking accuracy compared to state-of-the-art methods with a median tracking error of only 3.31mm. To classify these air-written shapes, a 5-layer CNN is trained and then converted to a Spiking Neural Network (SNN) using ANN-to-SNN conversion technique to reap the benefits of low power neuromorphic computing on edge. Experimental results show that the converted SNN achieves 92% accuracy (a mere 3% less than the CNN) while showing 4.4 × reduction in number of operations compared to CNN resulting in further energy benefit when run on actual neuromorphic computation platforms.</description><subject>air-writing</subject><subject>finger tracking</subject><subject>Neural networks</subject><subject>neuromorphic computing</subject><subject>Neuromorphic engineering</subject><subject>Performance evaluation</subject><subject>Shape</subject><subject>SONAR</subject><subject>Sonar applications</subject><subject>Spiking neural network</subject><subject>Tracking</subject><subject>Ultrasonic imaging</subject><issn>2158-1525</issn><isbn>9781665484855</isbn><isbn>1665484853</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKw0AARUdBsNZ-gQvnBxLnkXnEXQytFkoEYxFXZTKPdmxNwkyK-Pem2NVZHLhwLgD3GKUYo_xhWZdFnUkhWUoQIWmeU5EzfAFmuZCYc5bJTDJ2CSYEM5lgRtg1uInxCyGCECcT8DnXu-4j-MEmdVU9wkJ3xzh4DZ9UtAYWPiQnO9gW1jvVW_hmdbdt_eC7Fq6jb7ew7v3-xMoegzqMGH66sI-34MqpQ7SzM6dgvZi_ly_J6vV5WRarxGNKh6QhjbEcKyEcQk4LSU1uiNOOO8e0Q44qJ3TjjBkdoWZMMFmmtOBKNYhbOgV3_7veWrvpg_9W4XdzfoL-ATpeVT0</recordid><startdate>20220528</startdate><enddate>20220528</enddate><creator>George, Arun M</creator><creator>Gigie, Andrew</creator><creator>Kumar, A Anil</creator><creator>Dey, Sounak</creator><creator>Pal, Arpan</creator><creator>Aditi, K</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220528</creationdate><title>EchoWrite-SNN: Acoustic Based Air-Written Shape Recognition Using Spiking Neural Networks</title><author>George, Arun M ; Gigie, Andrew ; Kumar, A Anil ; Dey, Sounak ; Pal, Arpan ; Aditi, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-b2bde61a77f00fc783d9d2fcf6ff5cf0f3af7cbfddc7823d525d44ac76aab06e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>air-writing</topic><topic>finger tracking</topic><topic>Neural networks</topic><topic>neuromorphic computing</topic><topic>Neuromorphic engineering</topic><topic>Performance evaluation</topic><topic>Shape</topic><topic>SONAR</topic><topic>Sonar applications</topic><topic>Spiking neural network</topic><topic>Tracking</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>George, Arun M</creatorcontrib><creatorcontrib>Gigie, Andrew</creatorcontrib><creatorcontrib>Kumar, A Anil</creatorcontrib><creatorcontrib>Dey, Sounak</creatorcontrib><creatorcontrib>Pal, Arpan</creatorcontrib><creatorcontrib>Aditi, K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>George, Arun M</au><au>Gigie, Andrew</au><au>Kumar, A Anil</au><au>Dey, Sounak</au><au>Pal, Arpan</au><au>Aditi, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EchoWrite-SNN: Acoustic Based Air-Written Shape Recognition Using Spiking Neural Networks</atitle><btitle>2022 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2022-05-28</date><risdate>2022</risdate><spage>1067</spage><epage>1071</epage><pages>1067-1071</pages><eissn>2158-1525</eissn><eisbn>9781665484855</eisbn><eisbn>1665484853</eisbn><abstract>In this paper, we propose EchoWrite-SNN, a robust edge compatible air-writing recognition system (used in applications such as AR/VR, HRI etc.) based on principles of SONAR and neuromorphic computing. The bare finger movements in air are captured by a pair of commonly available speaker-microphone pair. A new tracking algorithm based on windowed difference cross-correlation and ESPRIT is employed which shows better tracking accuracy compared to state-of-the-art methods with a median tracking error of only 3.31mm. To classify these air-written shapes, a 5-layer CNN is trained and then converted to a Spiking Neural Network (SNN) using ANN-to-SNN conversion technique to reap the benefits of low power neuromorphic computing on edge. Experimental results show that the converted SNN achieves 92% accuracy (a mere 3% less than the CNN) while showing 4.4 × reduction in number of operations compared to CNN resulting in further energy benefit when run on actual neuromorphic computation platforms.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS48785.2022.9937951</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2158-1525 |
ispartof | 2022 IEEE International Symposium on Circuits and Systems (ISCAS), 2022, p.1067-1071 |
issn | 2158-1525 |
language | eng |
recordid | cdi_ieee_primary_9937951 |
source | IEEE Xplore All Conference Series |
subjects | air-writing finger tracking Neural networks neuromorphic computing Neuromorphic engineering Performance evaluation Shape SONAR Sonar applications Spiking neural network Tracking Ultrasonic imaging |
title | EchoWrite-SNN: Acoustic Based Air-Written Shape Recognition Using Spiking Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EchoWrite-SNN:%20Acoustic%20Based%20Air-Written%20Shape%20Recognition%20Using%20Spiking%20Neural%20Networks&rft.btitle=2022%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=George,%20Arun%20M&rft.date=2022-05-28&rft.spage=1067&rft.epage=1071&rft.pages=1067-1071&rft.eissn=2158-1525&rft_id=info:doi/10.1109/ISCAS48785.2022.9937951&rft.eisbn=9781665484855&rft.eisbn_list=1665484853&rft_dat=%3Cieee_CHZPO%3E9937951%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-b2bde61a77f00fc783d9d2fcf6ff5cf0f3af7cbfddc7823d525d44ac76aab06e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9937951&rfr_iscdi=true |