Loading…

Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity

This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent li...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.118108-118122
Main Authors: Chang, Gary W., Chinh, Nguyen Cong, Sinatra, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413
cites cdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413
container_end_page 118122
container_issue
container_start_page 118108
container_title IEEE access
container_volume 10
creator Chang, Gary W.
Chinh, Nguyen Cong
Sinatra, Christian
description This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA).
doi_str_mv 10.1109/ACCESS.2022.3220256
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9940949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9940949</ieee_id><doaj_id>oai_doaj_org_article_95b07a20c0814e8f9f5d824914790165</doaj_id><sourcerecordid>2736887309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWFhiS_IC-CPvuqb1uPV_eaBBISuLavYu1bpzruLEeSaa-_vnIcQvdlltXMrNgpiitGV4xR83ndNJvtdsUp5yvBMyj9rjjjTJtSKKHf_9d_LC5j3NNcdR6p6qz4vXme3MG1wU1H8jAmd3R_MZRfIOKOrMcxeOh-Ed-Tx5_kGgcMkJwfyOMBhsENT8QNBMhXF1Nw7fTytD3FhEfS-0Du4c_sN_NufEwzNjBC59LpovjQwyHi5SueFz--bb43N-Xdw_Vts74rO0nrVPa6QqpaziirNe4YM5oCU702uqWyUiBq1SlspVBcMAmMK6mpYYgdcC2ZOC9uF9-dh70dgztCOFkPzr4MfHiyEJLrDmiNamkFnHb5OBLr3vRqV3NpmKwMZVplr0-LV77K84Qx2b2fwpC_b3kldF1XgprMEgurCz7GgP3bVkbtHJhdArNzYPY1sKy6WlQOEd8UxkhqpBH_AF67kAU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736887309</pqid></control><display><type>article</type><title>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</title><source>IEEE Xplore Open Access Journals</source><creator>Chang, Gary W. ; Chinh, Nguyen Cong ; Sinatra, Christian</creator><creatorcontrib>Chang, Gary W. ; Chinh, Nguyen Cong ; Sinatra, Christian</creatorcontrib><description>This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3220256</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacity planning ; Distributed generation ; Genetic algorithms ; hosting capacity ; Inverters ; Linear programming ; Load flow analysis ; Maximization ; metaheuristic approach ; Metaheuristics ; Particle swarm optimization ; Photovoltaic cells ; Planning ; Power flow ; reverse power flow ; smart inverter</subject><ispartof>IEEE access, 2022, Vol.10, p.118108-118122</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</citedby><cites>FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</cites><orcidid>0000-0002-4940-9224 ; 0000-0002-8479-1713 ; 0000-0002-3530-742X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9940949$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chang, Gary W.</creatorcontrib><creatorcontrib>Chinh, Nguyen Cong</creatorcontrib><creatorcontrib>Sinatra, Christian</creatorcontrib><title>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA).</description><subject>Capacity planning</subject><subject>Distributed generation</subject><subject>Genetic algorithms</subject><subject>hosting capacity</subject><subject>Inverters</subject><subject>Linear programming</subject><subject>Load flow analysis</subject><subject>Maximization</subject><subject>metaheuristic approach</subject><subject>Metaheuristics</subject><subject>Particle swarm optimization</subject><subject>Photovoltaic cells</subject><subject>Planning</subject><subject>Power flow</subject><subject>reverse power flow</subject><subject>smart inverter</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWFhiS_IC-CPvuqb1uPV_eaBBISuLavYu1bpzruLEeSaa-_vnIcQvdlltXMrNgpiitGV4xR83ndNJvtdsUp5yvBMyj9rjjjTJtSKKHf_9d_LC5j3NNcdR6p6qz4vXme3MG1wU1H8jAmd3R_MZRfIOKOrMcxeOh-Ed-Tx5_kGgcMkJwfyOMBhsENT8QNBMhXF1Nw7fTytD3FhEfS-0Du4c_sN_NufEwzNjBC59LpovjQwyHi5SueFz--bb43N-Xdw_Vts74rO0nrVPa6QqpaziirNe4YM5oCU702uqWyUiBq1SlspVBcMAmMK6mpYYgdcC2ZOC9uF9-dh70dgztCOFkPzr4MfHiyEJLrDmiNamkFnHb5OBLr3vRqV3NpmKwMZVplr0-LV77K84Qx2b2fwpC_b3kldF1XgprMEgurCz7GgP3bVkbtHJhdArNzYPY1sKy6WlQOEd8UxkhqpBH_AF67kAU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chang, Gary W.</creator><creator>Chinh, Nguyen Cong</creator><creator>Sinatra, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4940-9224</orcidid><orcidid>https://orcid.org/0000-0002-8479-1713</orcidid><orcidid>https://orcid.org/0000-0002-3530-742X</orcidid></search><sort><creationdate>2022</creationdate><title>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</title><author>Chang, Gary W. ; Chinh, Nguyen Cong ; Sinatra, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacity planning</topic><topic>Distributed generation</topic><topic>Genetic algorithms</topic><topic>hosting capacity</topic><topic>Inverters</topic><topic>Linear programming</topic><topic>Load flow analysis</topic><topic>Maximization</topic><topic>metaheuristic approach</topic><topic>Metaheuristics</topic><topic>Particle swarm optimization</topic><topic>Photovoltaic cells</topic><topic>Planning</topic><topic>Power flow</topic><topic>reverse power flow</topic><topic>smart inverter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Gary W.</creatorcontrib><creatorcontrib>Chinh, Nguyen Cong</creatorcontrib><creatorcontrib>Sinatra, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Gary W.</au><au>Chinh, Nguyen Cong</au><au>Sinatra, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>118108</spage><epage>118122</epage><pages>118108-118122</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3220256</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4940-9224</orcidid><orcidid>https://orcid.org/0000-0002-8479-1713</orcidid><orcidid>https://orcid.org/0000-0002-3530-742X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.118108-118122
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9940949
source IEEE Xplore Open Access Journals
subjects Capacity planning
Distributed generation
Genetic algorithms
hosting capacity
Inverters
Linear programming
Load flow analysis
Maximization
metaheuristic approach
Metaheuristics
Particle swarm optimization
Photovoltaic cells
Planning
Power flow
reverse power flow
smart inverter
title Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20Optimizer-Based%20Approach%20of%20PV%20Generation%20Planning%20in%20a%20Distribution%20System%20for%20Maximizing%20Hosting%20Capacity&rft.jtitle=IEEE%20access&rft.au=Chang,%20Gary%20W.&rft.date=2022&rft.volume=10&rft.spage=118108&rft.epage=118122&rft.pages=118108-118122&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3220256&rft_dat=%3Cproquest_ieee_%3E2736887309%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736887309&rft_id=info:pmid/&rft_ieee_id=9940949&rfr_iscdi=true