Loading…
Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity
This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent li...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.118108-118122 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413 |
container_end_page | 118122 |
container_issue | |
container_start_page | 118108 |
container_title | IEEE access |
container_volume | 10 |
creator | Chang, Gary W. Chinh, Nguyen Cong Sinatra, Christian |
description | This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA). |
doi_str_mv | 10.1109/ACCESS.2022.3220256 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9940949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9940949</ieee_id><doaj_id>oai_doaj_org_article_95b07a20c0814e8f9f5d824914790165</doaj_id><sourcerecordid>2736887309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWFhiS_IC-CPvuqb1uPV_eaBBISuLavYu1bpzruLEeSaa-_vnIcQvdlltXMrNgpiitGV4xR83ndNJvtdsUp5yvBMyj9rjjjTJtSKKHf_9d_LC5j3NNcdR6p6qz4vXme3MG1wU1H8jAmd3R_MZRfIOKOrMcxeOh-Ed-Tx5_kGgcMkJwfyOMBhsENT8QNBMhXF1Nw7fTytD3FhEfS-0Du4c_sN_NufEwzNjBC59LpovjQwyHi5SueFz--bb43N-Xdw_Vts74rO0nrVPa6QqpaziirNe4YM5oCU702uqWyUiBq1SlspVBcMAmMK6mpYYgdcC2ZOC9uF9-dh70dgztCOFkPzr4MfHiyEJLrDmiNamkFnHb5OBLr3vRqV3NpmKwMZVplr0-LV77K84Qx2b2fwpC_b3kldF1XgprMEgurCz7GgP3bVkbtHJhdArNzYPY1sKy6WlQOEd8UxkhqpBH_AF67kAU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736887309</pqid></control><display><type>article</type><title>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</title><source>IEEE Xplore Open Access Journals</source><creator>Chang, Gary W. ; Chinh, Nguyen Cong ; Sinatra, Christian</creator><creatorcontrib>Chang, Gary W. ; Chinh, Nguyen Cong ; Sinatra, Christian</creatorcontrib><description>This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3220256</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacity planning ; Distributed generation ; Genetic algorithms ; hosting capacity ; Inverters ; Linear programming ; Load flow analysis ; Maximization ; metaheuristic approach ; Metaheuristics ; Particle swarm optimization ; Photovoltaic cells ; Planning ; Power flow ; reverse power flow ; smart inverter</subject><ispartof>IEEE access, 2022, Vol.10, p.118108-118122</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</citedby><cites>FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</cites><orcidid>0000-0002-4940-9224 ; 0000-0002-8479-1713 ; 0000-0002-3530-742X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9940949$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chang, Gary W.</creatorcontrib><creatorcontrib>Chinh, Nguyen Cong</creatorcontrib><creatorcontrib>Sinatra, Christian</creatorcontrib><title>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA).</description><subject>Capacity planning</subject><subject>Distributed generation</subject><subject>Genetic algorithms</subject><subject>hosting capacity</subject><subject>Inverters</subject><subject>Linear programming</subject><subject>Load flow analysis</subject><subject>Maximization</subject><subject>metaheuristic approach</subject><subject>Metaheuristics</subject><subject>Particle swarm optimization</subject><subject>Photovoltaic cells</subject><subject>Planning</subject><subject>Power flow</subject><subject>reverse power flow</subject><subject>smart inverter</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWFhiS_IC-CPvuqb1uPV_eaBBISuLavYu1bpzruLEeSaa-_vnIcQvdlltXMrNgpiitGV4xR83ndNJvtdsUp5yvBMyj9rjjjTJtSKKHf_9d_LC5j3NNcdR6p6qz4vXme3MG1wU1H8jAmd3R_MZRfIOKOrMcxeOh-Ed-Tx5_kGgcMkJwfyOMBhsENT8QNBMhXF1Nw7fTytD3FhEfS-0Du4c_sN_NufEwzNjBC59LpovjQwyHi5SueFz--bb43N-Xdw_Vts74rO0nrVPa6QqpaziirNe4YM5oCU702uqWyUiBq1SlspVBcMAmMK6mpYYgdcC2ZOC9uF9-dh70dgztCOFkPzr4MfHiyEJLrDmiNamkFnHb5OBLr3vRqV3NpmKwMZVplr0-LV77K84Qx2b2fwpC_b3kldF1XgprMEgurCz7GgP3bVkbtHJhdArNzYPY1sKy6WlQOEd8UxkhqpBH_AF67kAU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chang, Gary W.</creator><creator>Chinh, Nguyen Cong</creator><creator>Sinatra, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4940-9224</orcidid><orcidid>https://orcid.org/0000-0002-8479-1713</orcidid><orcidid>https://orcid.org/0000-0002-3530-742X</orcidid></search><sort><creationdate>2022</creationdate><title>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</title><author>Chang, Gary W. ; Chinh, Nguyen Cong ; Sinatra, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacity planning</topic><topic>Distributed generation</topic><topic>Genetic algorithms</topic><topic>hosting capacity</topic><topic>Inverters</topic><topic>Linear programming</topic><topic>Load flow analysis</topic><topic>Maximization</topic><topic>metaheuristic approach</topic><topic>Metaheuristics</topic><topic>Particle swarm optimization</topic><topic>Photovoltaic cells</topic><topic>Planning</topic><topic>Power flow</topic><topic>reverse power flow</topic><topic>smart inverter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Gary W.</creatorcontrib><creatorcontrib>Chinh, Nguyen Cong</creatorcontrib><creatorcontrib>Sinatra, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Gary W.</au><au>Chinh, Nguyen Cong</au><au>Sinatra, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>118108</spage><epage>118122</epage><pages>118108-118122</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents an Equilibrium Optimizer (EO)-based method that simultaneously determines locations and sizes of multiple photovoltaic (PV) units for maximizing a distribution system's PV hosting capacity (PVHC). The proposed method avoids various search-space restrictions seen in recent literature. The constraints in this paper are separated into two types based on the necessity of power flow analysis. The proposed method is implemented through co-simulation between MATLAB and OpenDSS. PV output and load demand variation is considered through a 24-hour profile representing a season. Smart inverter is considered through the PV inverter volt-var control (VVC) scheme. The proposed method is tested on the IEEE 123-bus benchmark system. Four test cases are considered to determine the impact of reverse power flow (RPF) limit and the impact of VVC toward the optimal PV planning. The results show that EO produces superior results compared to Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Coyote Optimization Algorithm (COA).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3220256</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4940-9224</orcidid><orcidid>https://orcid.org/0000-0002-8479-1713</orcidid><orcidid>https://orcid.org/0000-0002-3530-742X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.118108-118122 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9940949 |
source | IEEE Xplore Open Access Journals |
subjects | Capacity planning Distributed generation Genetic algorithms hosting capacity Inverters Linear programming Load flow analysis Maximization metaheuristic approach Metaheuristics Particle swarm optimization Photovoltaic cells Planning Power flow reverse power flow smart inverter |
title | Equilibrium Optimizer-Based Approach of PV Generation Planning in a Distribution System for Maximizing Hosting Capacity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20Optimizer-Based%20Approach%20of%20PV%20Generation%20Planning%20in%20a%20Distribution%20System%20for%20Maximizing%20Hosting%20Capacity&rft.jtitle=IEEE%20access&rft.au=Chang,%20Gary%20W.&rft.date=2022&rft.volume=10&rft.spage=118108&rft.epage=118122&rft.pages=118108-118122&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3220256&rft_dat=%3Cproquest_ieee_%3E2736887309%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-f67e05b210186ed11960a15f696b0475a385c5eb4352314a12546091eeca26413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736887309&rft_id=info:pmid/&rft_ieee_id=9940949&rfr_iscdi=true |