Loading…

Performance evaluation of license plate detection using deep neural networks on NPU VIM3 hardware platform

The detection of license plates (LPs) is a crucial step to develop the intelligent traffic management systems. Several challenges exist for the detection of LPs such as the high variation of the geometry of LPs or the frequent variation in the conditions of LP image acquisition. The paper presents a...

Full description

Saved in:
Bibliographic Details
Main Authors: Phong, Bui Hai, Trong, Nguyen Huu, Hoang, Manh- Thang, Le, Thi-Lan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 97
container_issue
container_start_page 92
container_title
container_volume
creator Phong, Bui Hai
Trong, Nguyen Huu
Hoang, Manh- Thang
Le, Thi-Lan
description The detection of license plates (LPs) is a crucial step to develop the intelligent traffic management systems. Several challenges exist for the detection of LPs such as the high variation of the geometry of LPs or the frequent variation in the conditions of LP image acquisition. The paper presents an end-to-end framework for the detection of LPs. The framework consists of two steps. The first one is the application and optimization of YOLOv4 network to detect LPs accurately. The second one is the strategy of the deployment and testing of the neural network on the NPU VIM3 tool kit. We have performed the evaluation on the large public dataset (Vietnamese license plate detection dataset). The performance comparison (the detection accuracy and execution time) with existed methods on various hardware platforms shows the effectiveness of the proposed method.
doi_str_mv 10.1109/ATC55345.2022.9943007
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9943007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9943007</ieee_id><sourcerecordid>9943007</sourcerecordid><originalsourceid>FETCH-LOGICAL-i480-afdb22437fa5800c11d1b70a631f5e3335a1e23f44cfade8afc304698de654d63</originalsourceid><addsrcrecordid>eNotkN1OwkAQhVcTEwnyBMZkX6A4u7Pbbi8J8YcElQv0lgzdWS2WlmyLxLenCufmy8nJzGSOEHcKxkpBfj9ZTq1FY8catB7nuUGA7EKM8sypNLXGKufcpRholepEAebXYtS2G-iVGUDIBmKz4BiauKW6YMk_VO2pK5taNkFWZcF1y3JXUcfSc8fFf7Rvy_qz97yTNe8jVT26QxO_W9mnr4t3-TF7QflF0R8onub_TtyIq0BVy6Mzh2L5-LCcPifzt6fZdDJPSuMgoeDXWhvMAlkHUCjl1ToDSlEFy4hoSbHGYEwRyLOjUCCYNHee-499ikNxe1pbMvNqF8stxd_VuRw8AsJtWiM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance evaluation of license plate detection using deep neural networks on NPU VIM3 hardware platform</title><source>IEEE Xplore All Conference Series</source><creator>Phong, Bui Hai ; Trong, Nguyen Huu ; Hoang, Manh- Thang ; Le, Thi-Lan</creator><creatorcontrib>Phong, Bui Hai ; Trong, Nguyen Huu ; Hoang, Manh- Thang ; Le, Thi-Lan</creatorcontrib><description>The detection of license plates (LPs) is a crucial step to develop the intelligent traffic management systems. Several challenges exist for the detection of LPs such as the high variation of the geometry of LPs or the frequent variation in the conditions of LP image acquisition. The paper presents an end-to-end framework for the detection of LPs. The framework consists of two steps. The first one is the application and optimization of YOLOv4 network to detect LPs accurately. The second one is the strategy of the deployment and testing of the neural network on the NPU VIM3 tool kit. We have performed the evaluation on the large public dataset (Vietnamese license plate detection dataset). The performance comparison (the detection accuracy and execution time) with existed methods on various hardware platforms shows the effectiveness of the proposed method.</description><identifier>EISSN: 2162-1039</identifier><identifier>EISBN: 9781665451888</identifier><identifier>EISBN: 1665451882</identifier><identifier>DOI: 10.1109/ATC55345.2022.9943007</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning ; Deep neural network ; Geometry ; Hardware ; license plate detection ; License plate recognition ; Neural networks ; NPU VIM3 kit ; Optimization ; Performance evaluation</subject><ispartof>2022 International Conference on Advanced Technologies for Communications (ATC), 2022, p.92-97</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9943007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9943007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phong, Bui Hai</creatorcontrib><creatorcontrib>Trong, Nguyen Huu</creatorcontrib><creatorcontrib>Hoang, Manh- Thang</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><title>Performance evaluation of license plate detection using deep neural networks on NPU VIM3 hardware platform</title><title>2022 International Conference on Advanced Technologies for Communications (ATC)</title><addtitle>ATC</addtitle><description>The detection of license plates (LPs) is a crucial step to develop the intelligent traffic management systems. Several challenges exist for the detection of LPs such as the high variation of the geometry of LPs or the frequent variation in the conditions of LP image acquisition. The paper presents an end-to-end framework for the detection of LPs. The framework consists of two steps. The first one is the application and optimization of YOLOv4 network to detect LPs accurately. The second one is the strategy of the deployment and testing of the neural network on the NPU VIM3 tool kit. We have performed the evaluation on the large public dataset (Vietnamese license plate detection dataset). The performance comparison (the detection accuracy and execution time) with existed methods on various hardware platforms shows the effectiveness of the proposed method.</description><subject>Deep learning</subject><subject>Deep neural network</subject><subject>Geometry</subject><subject>Hardware</subject><subject>license plate detection</subject><subject>License plate recognition</subject><subject>Neural networks</subject><subject>NPU VIM3 kit</subject><subject>Optimization</subject><subject>Performance evaluation</subject><issn>2162-1039</issn><isbn>9781665451888</isbn><isbn>1665451882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1OwkAQhVcTEwnyBMZkX6A4u7Pbbi8J8YcElQv0lgzdWS2WlmyLxLenCufmy8nJzGSOEHcKxkpBfj9ZTq1FY8catB7nuUGA7EKM8sypNLXGKufcpRholepEAebXYtS2G-iVGUDIBmKz4BiauKW6YMk_VO2pK5taNkFWZcF1y3JXUcfSc8fFf7Rvy_qz97yTNe8jVT26QxO_W9mnr4t3-TF7QflF0R8onub_TtyIq0BVy6Mzh2L5-LCcPifzt6fZdDJPSuMgoeDXWhvMAlkHUCjl1ToDSlEFy4hoSbHGYEwRyLOjUCCYNHee-499ikNxe1pbMvNqF8stxd_VuRw8AsJtWiM</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Phong, Bui Hai</creator><creator>Trong, Nguyen Huu</creator><creator>Hoang, Manh- Thang</creator><creator>Le, Thi-Lan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221020</creationdate><title>Performance evaluation of license plate detection using deep neural networks on NPU VIM3 hardware platform</title><author>Phong, Bui Hai ; Trong, Nguyen Huu ; Hoang, Manh- Thang ; Le, Thi-Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i480-afdb22437fa5800c11d1b70a631f5e3335a1e23f44cfade8afc304698de654d63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Deep neural network</topic><topic>Geometry</topic><topic>Hardware</topic><topic>license plate detection</topic><topic>License plate recognition</topic><topic>Neural networks</topic><topic>NPU VIM3 kit</topic><topic>Optimization</topic><topic>Performance evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Phong, Bui Hai</creatorcontrib><creatorcontrib>Trong, Nguyen Huu</creatorcontrib><creatorcontrib>Hoang, Manh- Thang</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phong, Bui Hai</au><au>Trong, Nguyen Huu</au><au>Hoang, Manh- Thang</au><au>Le, Thi-Lan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance evaluation of license plate detection using deep neural networks on NPU VIM3 hardware platform</atitle><btitle>2022 International Conference on Advanced Technologies for Communications (ATC)</btitle><stitle>ATC</stitle><date>2022-10-20</date><risdate>2022</risdate><spage>92</spage><epage>97</epage><pages>92-97</pages><eissn>2162-1039</eissn><eisbn>9781665451888</eisbn><eisbn>1665451882</eisbn><abstract>The detection of license plates (LPs) is a crucial step to develop the intelligent traffic management systems. Several challenges exist for the detection of LPs such as the high variation of the geometry of LPs or the frequent variation in the conditions of LP image acquisition. The paper presents an end-to-end framework for the detection of LPs. The framework consists of two steps. The first one is the application and optimization of YOLOv4 network to detect LPs accurately. The second one is the strategy of the deployment and testing of the neural network on the NPU VIM3 tool kit. We have performed the evaluation on the large public dataset (Vietnamese license plate detection dataset). The performance comparison (the detection accuracy and execution time) with existed methods on various hardware platforms shows the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ATC55345.2022.9943007</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2162-1039
ispartof 2022 International Conference on Advanced Technologies for Communications (ATC), 2022, p.92-97
issn 2162-1039
language eng
recordid cdi_ieee_primary_9943007
source IEEE Xplore All Conference Series
subjects Deep learning
Deep neural network
Geometry
Hardware
license plate detection
License plate recognition
Neural networks
NPU VIM3 kit
Optimization
Performance evaluation
title Performance evaluation of license plate detection using deep neural networks on NPU VIM3 hardware platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20evaluation%20of%20license%20plate%20detection%20using%20deep%20neural%20networks%20on%20NPU%20VIM3%20hardware%20platform&rft.btitle=2022%20International%20Conference%20on%20Advanced%20Technologies%20for%20Communications%20(ATC)&rft.au=Phong,%20Bui%20Hai&rft.date=2022-10-20&rft.spage=92&rft.epage=97&rft.pages=92-97&rft.eissn=2162-1039&rft_id=info:doi/10.1109/ATC55345.2022.9943007&rft.eisbn=9781665451888&rft.eisbn_list=1665451882&rft_dat=%3Cieee_CHZPO%3E9943007%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i480-afdb22437fa5800c11d1b70a631f5e3335a1e23f44cfade8afc304698de654d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9943007&rfr_iscdi=true