Loading…
Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects
Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human l...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 157 |
container_issue | |
container_start_page | 154 |
container_title | |
container_volume | |
creator | Fedotov, Alexander A. Badenko, Vladimir L. Kuptsov, Vladimir D. Ivanov, Sergei I. Eremenko, Danila Yu |
description | Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object. |
doi_str_mv | 10.1109/EExPolytech56308.2022.9950902 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9950902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950902</ieee_id><sourcerecordid>9950902</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-128fc73c79b2c1bba3f3ce68d4bf197c13b7cb8869503714ae22057efa484fb33</originalsourceid><addsrcrecordid>eNotkE1PwkAQhlcTEwnyC7zsxWNxP9r9OJpS1AQDAYzeyO52KiW0S9pNhN_gn7YFTjOZzDNP5kXoiZIxpUQ_Z9lx4fenAG6bCE7UmBHGxlonRBN2g0ZaKipEEmvCibhFAyYljYSW3_do1LY7QghnJCZSDNBf1oayMqH0NfYFXh3Ahcbsceqrg6-hDi1emMZUEKBp-42wBbwuK8AraEo4j5bmF08_0q-uyU2DJyYYHDye9ExV1nBmlqb-AWzqvHdA3nMz7y7iud112vYB3RVm38LoWofoc5qt07doNn99T19mUUmpChFlqnCSO6ktc9RawwvuQKg8tgXV0lFupbNKiS4PLmlsgDGSSChMrOLCcj5Ej5e7JQBsDk33f3PaXOPj_8IDaFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</title><source>IEEE Xplore All Conference Series</source><creator>Fedotov, Alexander A. ; Badenko, Vladimir L. ; Kuptsov, Vladimir D. ; Ivanov, Sergei I. ; Eremenko, Danila Yu</creator><creatorcontrib>Fedotov, Alexander A. ; Badenko, Vladimir L. ; Kuptsov, Vladimir D. ; Ivanov, Sergei I. ; Eremenko, Danila Yu</creatorcontrib><description>Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object.</description><identifier>EISSN: 2771-697X</identifier><identifier>EISBN: 9781665490306</identifier><identifier>EISBN: 1665490306</identifier><identifier>DOI: 10.1109/EExPolytech56308.2022.9950902</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Intelligence ; Convolutional Neural Networks (CNN) ; FFT ; filtering ; FMCW ; multi-target ; object detection ; quantization noise ; Radar ; Radar detection ; range ; Signal representation ; speed ; Time series analysis ; Time-frequency analysis ; Traffic control ; Training</subject><ispartof>2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.154-157</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9950902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fedotov, Alexander A.</creatorcontrib><creatorcontrib>Badenko, Vladimir L.</creatorcontrib><creatorcontrib>Kuptsov, Vladimir D.</creatorcontrib><creatorcontrib>Ivanov, Sergei I.</creatorcontrib><creatorcontrib>Eremenko, Danila Yu</creatorcontrib><title>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</title><title>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</title><addtitle>EEXPOLYTECH</addtitle><description>Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object.</description><subject>Artificial Intelligence</subject><subject>Convolutional Neural Networks (CNN)</subject><subject>FFT</subject><subject>filtering</subject><subject>FMCW</subject><subject>multi-target</subject><subject>object detection</subject><subject>quantization noise</subject><subject>Radar</subject><subject>Radar detection</subject><subject>range</subject><subject>Signal representation</subject><subject>speed</subject><subject>Time series analysis</subject><subject>Time-frequency analysis</subject><subject>Traffic control</subject><subject>Training</subject><issn>2771-697X</issn><isbn>9781665490306</isbn><isbn>1665490306</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1PwkAQhlcTEwnyC7zsxWNxP9r9OJpS1AQDAYzeyO52KiW0S9pNhN_gn7YFTjOZzDNP5kXoiZIxpUQ_Z9lx4fenAG6bCE7UmBHGxlonRBN2g0ZaKipEEmvCibhFAyYljYSW3_do1LY7QghnJCZSDNBf1oayMqH0NfYFXh3Ahcbsceqrg6-hDi1emMZUEKBp-42wBbwuK8AraEo4j5bmF08_0q-uyU2DJyYYHDye9ExV1nBmlqb-AWzqvHdA3nMz7y7iud112vYB3RVm38LoWofoc5qt07doNn99T19mUUmpChFlqnCSO6ktc9RawwvuQKg8tgXV0lFupbNKiS4PLmlsgDGSSChMrOLCcj5Ej5e7JQBsDk33f3PaXOPj_8IDaFw</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Fedotov, Alexander A.</creator><creator>Badenko, Vladimir L.</creator><creator>Kuptsov, Vladimir D.</creator><creator>Ivanov, Sergei I.</creator><creator>Eremenko, Danila Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221020</creationdate><title>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</title><author>Fedotov, Alexander A. ; Badenko, Vladimir L. ; Kuptsov, Vladimir D. ; Ivanov, Sergei I. ; Eremenko, Danila Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-128fc73c79b2c1bba3f3ce68d4bf197c13b7cb8869503714ae22057efa484fb33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Convolutional Neural Networks (CNN)</topic><topic>FFT</topic><topic>filtering</topic><topic>FMCW</topic><topic>multi-target</topic><topic>object detection</topic><topic>quantization noise</topic><topic>Radar</topic><topic>Radar detection</topic><topic>range</topic><topic>Signal representation</topic><topic>speed</topic><topic>Time series analysis</topic><topic>Time-frequency analysis</topic><topic>Traffic control</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Fedotov, Alexander A.</creatorcontrib><creatorcontrib>Badenko, Vladimir L.</creatorcontrib><creatorcontrib>Kuptsov, Vladimir D.</creatorcontrib><creatorcontrib>Ivanov, Sergei I.</creatorcontrib><creatorcontrib>Eremenko, Danila Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fedotov, Alexander A.</au><au>Badenko, Vladimir L.</au><au>Kuptsov, Vladimir D.</au><au>Ivanov, Sergei I.</au><au>Eremenko, Danila Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</atitle><btitle>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</btitle><stitle>EEXPOLYTECH</stitle><date>2022-10-20</date><risdate>2022</risdate><spage>154</spage><epage>157</epage><pages>154-157</pages><eissn>2771-697X</eissn><eisbn>9781665490306</eisbn><eisbn>1665490306</eisbn><abstract>Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object.</abstract><pub>IEEE</pub><doi>10.1109/EExPolytech56308.2022.9950902</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2771-697X |
ispartof | 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.154-157 |
issn | 2771-697X |
language | eng |
recordid | cdi_ieee_primary_9950902 |
source | IEEE Xplore All Conference Series |
subjects | Artificial Intelligence Convolutional Neural Networks (CNN) FFT filtering FMCW multi-target object detection quantization noise Radar Radar detection range Signal representation speed Time series analysis Time-frequency analysis Traffic control Training |
title | Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20Spectral%20Components%20Parameters%20of%20the%20Time%20Series%20of%20Raw%20FMCW%20Radar%20Data%20to%20Determine%20the%20Range%20and%20Speed%20of%20Location%20Objects&rft.btitle=2022%20International%20Conference%20on%20Electrical%20Engineering%20and%20Photonics%20(EExPolytech)&rft.au=Fedotov,%20Alexander%20A.&rft.date=2022-10-20&rft.spage=154&rft.epage=157&rft.pages=154-157&rft.eissn=2771-697X&rft_id=info:doi/10.1109/EExPolytech56308.2022.9950902&rft.eisbn=9781665490306&rft.eisbn_list=1665490306&rft_dat=%3Cieee_CHZPO%3E9950902%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-128fc73c79b2c1bba3f3ce68d4bf197c13b7cb8869503714ae22057efa484fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9950902&rfr_iscdi=true |