Loading…

Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects

Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human l...

Full description

Saved in:
Bibliographic Details
Main Authors: Fedotov, Alexander A., Badenko, Vladimir L., Kuptsov, Vladimir D., Ivanov, Sergei I., Eremenko, Danila Yu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 157
container_issue
container_start_page 154
container_title
container_volume
creator Fedotov, Alexander A.
Badenko, Vladimir L.
Kuptsov, Vladimir D.
Ivanov, Sergei I.
Eremenko, Danila Yu
description Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object.
doi_str_mv 10.1109/EExPolytech56308.2022.9950902
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9950902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950902</ieee_id><sourcerecordid>9950902</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-128fc73c79b2c1bba3f3ce68d4bf197c13b7cb8869503714ae22057efa484fb33</originalsourceid><addsrcrecordid>eNotkE1PwkAQhlcTEwnyC7zsxWNxP9r9OJpS1AQDAYzeyO52KiW0S9pNhN_gn7YFTjOZzDNP5kXoiZIxpUQ_Z9lx4fenAG6bCE7UmBHGxlonRBN2g0ZaKipEEmvCibhFAyYljYSW3_do1LY7QghnJCZSDNBf1oayMqH0NfYFXh3Ahcbsceqrg6-hDi1emMZUEKBp-42wBbwuK8AraEo4j5bmF08_0q-uyU2DJyYYHDye9ExV1nBmlqb-AWzqvHdA3nMz7y7iud112vYB3RVm38LoWofoc5qt07doNn99T19mUUmpChFlqnCSO6ktc9RawwvuQKg8tgXV0lFupbNKiS4PLmlsgDGSSChMrOLCcj5Ej5e7JQBsDk33f3PaXOPj_8IDaFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</title><source>IEEE Xplore All Conference Series</source><creator>Fedotov, Alexander A. ; Badenko, Vladimir L. ; Kuptsov, Vladimir D. ; Ivanov, Sergei I. ; Eremenko, Danila Yu</creator><creatorcontrib>Fedotov, Alexander A. ; Badenko, Vladimir L. ; Kuptsov, Vladimir D. ; Ivanov, Sergei I. ; Eremenko, Danila Yu</creatorcontrib><description>Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object.</description><identifier>EISSN: 2771-697X</identifier><identifier>EISBN: 9781665490306</identifier><identifier>EISBN: 1665490306</identifier><identifier>DOI: 10.1109/EExPolytech56308.2022.9950902</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Intelligence ; Convolutional Neural Networks (CNN) ; FFT ; filtering ; FMCW ; multi-target ; object detection ; quantization noise ; Radar ; Radar detection ; range ; Signal representation ; speed ; Time series analysis ; Time-frequency analysis ; Traffic control ; Training</subject><ispartof>2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.154-157</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9950902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fedotov, Alexander A.</creatorcontrib><creatorcontrib>Badenko, Vladimir L.</creatorcontrib><creatorcontrib>Kuptsov, Vladimir D.</creatorcontrib><creatorcontrib>Ivanov, Sergei I.</creatorcontrib><creatorcontrib>Eremenko, Danila Yu</creatorcontrib><title>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</title><title>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</title><addtitle>EEXPOLYTECH</addtitle><description>Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object.</description><subject>Artificial Intelligence</subject><subject>Convolutional Neural Networks (CNN)</subject><subject>FFT</subject><subject>filtering</subject><subject>FMCW</subject><subject>multi-target</subject><subject>object detection</subject><subject>quantization noise</subject><subject>Radar</subject><subject>Radar detection</subject><subject>range</subject><subject>Signal representation</subject><subject>speed</subject><subject>Time series analysis</subject><subject>Time-frequency analysis</subject><subject>Traffic control</subject><subject>Training</subject><issn>2771-697X</issn><isbn>9781665490306</isbn><isbn>1665490306</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1PwkAQhlcTEwnyC7zsxWNxP9r9OJpS1AQDAYzeyO52KiW0S9pNhN_gn7YFTjOZzDNP5kXoiZIxpUQ_Z9lx4fenAG6bCE7UmBHGxlonRBN2g0ZaKipEEmvCibhFAyYljYSW3_do1LY7QghnJCZSDNBf1oayMqH0NfYFXh3Ahcbsceqrg6-hDi1emMZUEKBp-42wBbwuK8AraEo4j5bmF08_0q-uyU2DJyYYHDye9ExV1nBmlqb-AWzqvHdA3nMz7y7iud112vYB3RVm38LoWofoc5qt07doNn99T19mUUmpChFlqnCSO6ktc9RawwvuQKg8tgXV0lFupbNKiS4PLmlsgDGSSChMrOLCcj5Ej5e7JQBsDk33f3PaXOPj_8IDaFw</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Fedotov, Alexander A.</creator><creator>Badenko, Vladimir L.</creator><creator>Kuptsov, Vladimir D.</creator><creator>Ivanov, Sergei I.</creator><creator>Eremenko, Danila Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221020</creationdate><title>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</title><author>Fedotov, Alexander A. ; Badenko, Vladimir L. ; Kuptsov, Vladimir D. ; Ivanov, Sergei I. ; Eremenko, Danila Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-128fc73c79b2c1bba3f3ce68d4bf197c13b7cb8869503714ae22057efa484fb33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Convolutional Neural Networks (CNN)</topic><topic>FFT</topic><topic>filtering</topic><topic>FMCW</topic><topic>multi-target</topic><topic>object detection</topic><topic>quantization noise</topic><topic>Radar</topic><topic>Radar detection</topic><topic>range</topic><topic>Signal representation</topic><topic>speed</topic><topic>Time series analysis</topic><topic>Time-frequency analysis</topic><topic>Traffic control</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Fedotov, Alexander A.</creatorcontrib><creatorcontrib>Badenko, Vladimir L.</creatorcontrib><creatorcontrib>Kuptsov, Vladimir D.</creatorcontrib><creatorcontrib>Ivanov, Sergei I.</creatorcontrib><creatorcontrib>Eremenko, Danila Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fedotov, Alexander A.</au><au>Badenko, Vladimir L.</au><au>Kuptsov, Vladimir D.</au><au>Ivanov, Sergei I.</au><au>Eremenko, Danila Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects</atitle><btitle>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</btitle><stitle>EEXPOLYTECH</stitle><date>2022-10-20</date><risdate>2022</risdate><spage>154</spage><epage>157</epage><pages>154-157</pages><eissn>2771-697X</eissn><eisbn>9781665490306</eisbn><eisbn>1665490306</eisbn><abstract>Radars with frequency modulated continuous wave (FMCW) have significant advantages in determining such parameters of sounded objects as range and speed. FMCW radars are widely used in autonomous vehicle control systems, traffic control systems, smart city technologies and many other areas of human life. However, the main gaps which we try to bridge in the manuscript lie in the processing of the FMCW radar signal to detect range and speed of sounded object. The development of data analysis and knowledge extraction methods based on artificial neural networks (ANN) has recently demonstrated significant progress in various fields of science and technology. The hypothesis of this research is that the application of ANN methods to the analysis of radar data should solve above mentioned gap. This article discusses the results of processing raw FMCW radar data using artificial neural network technologies to solve the problems of extracting information about the speed and range of an object.</abstract><pub>IEEE</pub><doi>10.1109/EExPolytech56308.2022.9950902</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-697X
ispartof 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.154-157
issn 2771-697X
language eng
recordid cdi_ieee_primary_9950902
source IEEE Xplore All Conference Series
subjects Artificial Intelligence
Convolutional Neural Networks (CNN)
FFT
filtering
FMCW
multi-target
object detection
quantization noise
Radar
Radar detection
range
Signal representation
speed
Time series analysis
Time-frequency analysis
Traffic control
Training
title Estimation of Spectral Components Parameters of the Time Series of Raw FMCW Radar Data to Determine the Range and Speed of Location Objects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20Spectral%20Components%20Parameters%20of%20the%20Time%20Series%20of%20Raw%20FMCW%20Radar%20Data%20to%20Determine%20the%20Range%20and%20Speed%20of%20Location%20Objects&rft.btitle=2022%20International%20Conference%20on%20Electrical%20Engineering%20and%20Photonics%20(EExPolytech)&rft.au=Fedotov,%20Alexander%20A.&rft.date=2022-10-20&rft.spage=154&rft.epage=157&rft.pages=154-157&rft.eissn=2771-697X&rft_id=info:doi/10.1109/EExPolytech56308.2022.9950902&rft.eisbn=9781665490306&rft.eisbn_list=1665490306&rft_dat=%3Cieee_CHZPO%3E9950902%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-128fc73c79b2c1bba3f3ce68d4bf197c13b7cb8869503714ae22057efa484fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9950902&rfr_iscdi=true