Loading…
Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data
Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyze...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 150 |
container_issue | |
container_start_page | 146 |
container_title | |
container_volume | |
creator | Altay, Yeldos A. Fedorov, Aleksey V. Stepanova, Ksenia A. Kuzivanov, Dmitry O. |
description | Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument. |
doi_str_mv | 10.1109/EExPolytech56308.2022.9950907 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9950907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950907</ieee_id><sourcerecordid>9950907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i486-4f0e0ec17f5e6bfdd678631de862b158e9867ed3738720ddd3cb0854fa81c8c3</originalsourceid><addsrcrecordid>eNotkM9OAjEYxKuJiQR5Ai-9eFz8ut3tH28Ii5JAJIGDN1K230LNsiW0BHgJn9lFPU0yyfxmMoQ8MegzBvq5KM5zX18ilttccFD9FNK0r3UOGuQN6WmpmBB5poGDuCWdVEqWCC0_70kvhC8A4ClkIEWHfA9KfwzRlbTYuRCcb-jCbRpT07GrIx5cs6EzjFtvA638gU4sNtFVl6s_CMGXzsQ2FOgrxhNiQ0fObBr_S5ybg9lhCwnUV3R58nTm6vqaHB5ja7_Q4rxvK3Ytsi0cmWgeyF1l6oC9f-2SxbhYDt-T6cfbZDiYJi5TIskqQMCSySpHsa6sFVIJziwqka5ZrlArIdFyyZVMwVrLyzWoPKuMYqUqeZc8_lEdIq727QJzuKz-_-M_EgFrSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</title><source>IEEE Xplore All Conference Series</source><creator>Altay, Yeldos A. ; Fedorov, Aleksey V. ; Stepanova, Ksenia A. ; Kuzivanov, Dmitry O.</creator><creatorcontrib>Altay, Yeldos A. ; Fedorov, Aleksey V. ; Stepanova, Ksenia A. ; Kuzivanov, Dmitry O.</creatorcontrib><description>Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument.</description><identifier>EISSN: 2771-697X</identifier><identifier>EISBN: 9781665490306</identifier><identifier>EISBN: 1665490306</identifier><identifier>DOI: 10.1109/EExPolytech56308.2022.9950907</identifier><language>eng</language><publisher>IEEE</publisher><subject>acoustic emission signal ; associating ; correlation analysis ; Cutting tools ; diagnostic parameters ; Filtering ; Instruments ; Machine learning ; Milling ; Noise measurement ; Nondestructive testing ; polynomial filter</subject><ispartof>2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9950907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Altay, Yeldos A.</creatorcontrib><creatorcontrib>Fedorov, Aleksey V.</creatorcontrib><creatorcontrib>Stepanova, Ksenia A.</creatorcontrib><creatorcontrib>Kuzivanov, Dmitry O.</creatorcontrib><title>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</title><title>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</title><addtitle>EEXPOLYTECH</addtitle><description>Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument.</description><subject>acoustic emission signal</subject><subject>associating</subject><subject>correlation analysis</subject><subject>Cutting tools</subject><subject>diagnostic parameters</subject><subject>Filtering</subject><subject>Instruments</subject><subject>Machine learning</subject><subject>Milling</subject><subject>Noise measurement</subject><subject>Nondestructive testing</subject><subject>polynomial filter</subject><issn>2771-697X</issn><isbn>9781665490306</isbn><isbn>1665490306</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9OAjEYxKuJiQR5Ai-9eFz8ut3tH28Ii5JAJIGDN1K230LNsiW0BHgJn9lFPU0yyfxmMoQ8MegzBvq5KM5zX18ilttccFD9FNK0r3UOGuQN6WmpmBB5poGDuCWdVEqWCC0_70kvhC8A4ClkIEWHfA9KfwzRlbTYuRCcb-jCbRpT07GrIx5cs6EzjFtvA638gU4sNtFVl6s_CMGXzsQ2FOgrxhNiQ0fObBr_S5ybg9lhCwnUV3R58nTm6vqaHB5ja7_Q4rxvK3Ytsi0cmWgeyF1l6oC9f-2SxbhYDt-T6cfbZDiYJi5TIskqQMCSySpHsa6sFVIJziwqka5ZrlArIdFyyZVMwVrLyzWoPKuMYqUqeZc8_lEdIq727QJzuKz-_-M_EgFrSw</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Altay, Yeldos A.</creator><creator>Fedorov, Aleksey V.</creator><creator>Stepanova, Ksenia A.</creator><creator>Kuzivanov, Dmitry O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221020</creationdate><title>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</title><author>Altay, Yeldos A. ; Fedorov, Aleksey V. ; Stepanova, Ksenia A. ; Kuzivanov, Dmitry O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i486-4f0e0ec17f5e6bfdd678631de862b158e9867ed3738720ddd3cb0854fa81c8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>acoustic emission signal</topic><topic>associating</topic><topic>correlation analysis</topic><topic>Cutting tools</topic><topic>diagnostic parameters</topic><topic>Filtering</topic><topic>Instruments</topic><topic>Machine learning</topic><topic>Milling</topic><topic>Noise measurement</topic><topic>Nondestructive testing</topic><topic>polynomial filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Altay, Yeldos A.</creatorcontrib><creatorcontrib>Fedorov, Aleksey V.</creatorcontrib><creatorcontrib>Stepanova, Ksenia A.</creatorcontrib><creatorcontrib>Kuzivanov, Dmitry O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Altay, Yeldos A.</au><au>Fedorov, Aleksey V.</au><au>Stepanova, Ksenia A.</au><au>Kuzivanov, Dmitry O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</atitle><btitle>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</btitle><stitle>EEXPOLYTECH</stitle><date>2022-10-20</date><risdate>2022</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><eissn>2771-697X</eissn><eisbn>9781665490306</eisbn><eisbn>1665490306</eisbn><abstract>Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument.</abstract><pub>IEEE</pub><doi>10.1109/EExPolytech56308.2022.9950907</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2771-697X |
ispartof | 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.146-150 |
issn | 2771-697X |
language | eng |
recordid | cdi_ieee_primary_9950907 |
source | IEEE Xplore All Conference Series |
subjects | acoustic emission signal associating correlation analysis Cutting tools diagnostic parameters Filtering Instruments Machine learning Milling Noise measurement Nondestructive testing polynomial filter |
title | Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acoustic%20Emission%20Signal%20Filtering%20Methods%20for%20Identifying%20Associations%20Between%20Diagnostic%20Parameters%20of%20Two%20Milling%20Cutter:%20Experimental%20Data&rft.btitle=2022%20International%20Conference%20on%20Electrical%20Engineering%20and%20Photonics%20(EExPolytech)&rft.au=Altay,%20Yeldos%20A.&rft.date=2022-10-20&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.eissn=2771-697X&rft_id=info:doi/10.1109/EExPolytech56308.2022.9950907&rft.eisbn=9781665490306&rft.eisbn_list=1665490306&rft_dat=%3Cieee_CHZPO%3E9950907%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i486-4f0e0ec17f5e6bfdd678631de862b158e9867ed3738720ddd3cb0854fa81c8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9950907&rfr_iscdi=true |