Loading…

Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data

Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyze...

Full description

Saved in:
Bibliographic Details
Main Authors: Altay, Yeldos A., Fedorov, Aleksey V., Stepanova, Ksenia A., Kuzivanov, Dmitry O.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 150
container_issue
container_start_page 146
container_title
container_volume
creator Altay, Yeldos A.
Fedorov, Aleksey V.
Stepanova, Ksenia A.
Kuzivanov, Dmitry O.
description Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument.
doi_str_mv 10.1109/EExPolytech56308.2022.9950907
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9950907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950907</ieee_id><sourcerecordid>9950907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i486-4f0e0ec17f5e6bfdd678631de862b158e9867ed3738720ddd3cb0854fa81c8c3</originalsourceid><addsrcrecordid>eNotkM9OAjEYxKuJiQR5Ai-9eFz8ut3tH28Ii5JAJIGDN1K230LNsiW0BHgJn9lFPU0yyfxmMoQ8MegzBvq5KM5zX18ilttccFD9FNK0r3UOGuQN6WmpmBB5poGDuCWdVEqWCC0_70kvhC8A4ClkIEWHfA9KfwzRlbTYuRCcb-jCbRpT07GrIx5cs6EzjFtvA638gU4sNtFVl6s_CMGXzsQ2FOgrxhNiQ0fObBr_S5ybg9lhCwnUV3R58nTm6vqaHB5ja7_Q4rxvK3Ytsi0cmWgeyF1l6oC9f-2SxbhYDt-T6cfbZDiYJi5TIskqQMCSySpHsa6sFVIJziwqka5ZrlArIdFyyZVMwVrLyzWoPKuMYqUqeZc8_lEdIq727QJzuKz-_-M_EgFrSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</title><source>IEEE Xplore All Conference Series</source><creator>Altay, Yeldos A. ; Fedorov, Aleksey V. ; Stepanova, Ksenia A. ; Kuzivanov, Dmitry O.</creator><creatorcontrib>Altay, Yeldos A. ; Fedorov, Aleksey V. ; Stepanova, Ksenia A. ; Kuzivanov, Dmitry O.</creatorcontrib><description>Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument.</description><identifier>EISSN: 2771-697X</identifier><identifier>EISBN: 9781665490306</identifier><identifier>EISBN: 1665490306</identifier><identifier>DOI: 10.1109/EExPolytech56308.2022.9950907</identifier><language>eng</language><publisher>IEEE</publisher><subject>acoustic emission signal ; associating ; correlation analysis ; Cutting tools ; diagnostic parameters ; Filtering ; Instruments ; Machine learning ; Milling ; Noise measurement ; Nondestructive testing ; polynomial filter</subject><ispartof>2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9950907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Altay, Yeldos A.</creatorcontrib><creatorcontrib>Fedorov, Aleksey V.</creatorcontrib><creatorcontrib>Stepanova, Ksenia A.</creatorcontrib><creatorcontrib>Kuzivanov, Dmitry O.</creatorcontrib><title>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</title><title>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</title><addtitle>EEXPOLYTECH</addtitle><description>Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument.</description><subject>acoustic emission signal</subject><subject>associating</subject><subject>correlation analysis</subject><subject>Cutting tools</subject><subject>diagnostic parameters</subject><subject>Filtering</subject><subject>Instruments</subject><subject>Machine learning</subject><subject>Milling</subject><subject>Noise measurement</subject><subject>Nondestructive testing</subject><subject>polynomial filter</subject><issn>2771-697X</issn><isbn>9781665490306</isbn><isbn>1665490306</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9OAjEYxKuJiQR5Ai-9eFz8ut3tH28Ii5JAJIGDN1K230LNsiW0BHgJn9lFPU0yyfxmMoQ8MegzBvq5KM5zX18ilttccFD9FNK0r3UOGuQN6WmpmBB5poGDuCWdVEqWCC0_70kvhC8A4ClkIEWHfA9KfwzRlbTYuRCcb-jCbRpT07GrIx5cs6EzjFtvA638gU4sNtFVl6s_CMGXzsQ2FOgrxhNiQ0fObBr_S5ybg9lhCwnUV3R58nTm6vqaHB5ja7_Q4rxvK3Ytsi0cmWgeyF1l6oC9f-2SxbhYDt-T6cfbZDiYJi5TIskqQMCSySpHsa6sFVIJziwqka5ZrlArIdFyyZVMwVrLyzWoPKuMYqUqeZc8_lEdIq727QJzuKz-_-M_EgFrSw</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Altay, Yeldos A.</creator><creator>Fedorov, Aleksey V.</creator><creator>Stepanova, Ksenia A.</creator><creator>Kuzivanov, Dmitry O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221020</creationdate><title>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</title><author>Altay, Yeldos A. ; Fedorov, Aleksey V. ; Stepanova, Ksenia A. ; Kuzivanov, Dmitry O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i486-4f0e0ec17f5e6bfdd678631de862b158e9867ed3738720ddd3cb0854fa81c8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>acoustic emission signal</topic><topic>associating</topic><topic>correlation analysis</topic><topic>Cutting tools</topic><topic>diagnostic parameters</topic><topic>Filtering</topic><topic>Instruments</topic><topic>Machine learning</topic><topic>Milling</topic><topic>Noise measurement</topic><topic>Nondestructive testing</topic><topic>polynomial filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Altay, Yeldos A.</creatorcontrib><creatorcontrib>Fedorov, Aleksey V.</creatorcontrib><creatorcontrib>Stepanova, Ksenia A.</creatorcontrib><creatorcontrib>Kuzivanov, Dmitry O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Altay, Yeldos A.</au><au>Fedorov, Aleksey V.</au><au>Stepanova, Ksenia A.</au><au>Kuzivanov, Dmitry O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data</atitle><btitle>2022 International Conference on Electrical Engineering and Photonics (EExPolytech)</btitle><stitle>EEXPOLYTECH</stitle><date>2022-10-20</date><risdate>2022</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><eissn>2771-697X</eissn><eisbn>9781665490306</eisbn><eisbn>1665490306</eisbn><abstract>Identification of association between diagnostic parameters of AE signals is an important task of nondestructive testing. This article presents the results of applying the previously developed polynomial filtering method for processing AE signals. The operability of this filtering method was analyzed based on 120 noisy AE signals. It has been established that, on average, the filtering method increases the signal-to-noise ratio up to 10 dB and identify a statistically significant association between the diagnostic parameters of a defective and defect-free instrument.</abstract><pub>IEEE</pub><doi>10.1109/EExPolytech56308.2022.9950907</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-697X
ispartof 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), 2022, p.146-150
issn 2771-697X
language eng
recordid cdi_ieee_primary_9950907
source IEEE Xplore All Conference Series
subjects acoustic emission signal
associating
correlation analysis
Cutting tools
diagnostic parameters
Filtering
Instruments
Machine learning
Milling
Noise measurement
Nondestructive testing
polynomial filter
title Acoustic Emission Signal Filtering Methods for Identifying Associations Between Diagnostic Parameters of Two Milling Cutter: Experimental Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acoustic%20Emission%20Signal%20Filtering%20Methods%20for%20Identifying%20Associations%20Between%20Diagnostic%20Parameters%20of%20Two%20Milling%20Cutter:%20Experimental%20Data&rft.btitle=2022%20International%20Conference%20on%20Electrical%20Engineering%20and%20Photonics%20(EExPolytech)&rft.au=Altay,%20Yeldos%20A.&rft.date=2022-10-20&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.eissn=2771-697X&rft_id=info:doi/10.1109/EExPolytech56308.2022.9950907&rft.eisbn=9781665490306&rft.eisbn_list=1665490306&rft_dat=%3Cieee_CHZPO%3E9950907%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i486-4f0e0ec17f5e6bfdd678631de862b158e9867ed3738720ddd3cb0854fa81c8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9950907&rfr_iscdi=true