Loading…
Elastic Network Cache Control Using Deep Reinforcement Learning
Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1008 |
container_issue | |
container_start_page | 1006 |
container_title | |
container_volume | |
creator | Cho, Chunglae Shin, Seungjae Jeon, Hongseok Yoon, Seunghyun |
description | Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the one hand and minimize the cost of leasing the cache storage on the other hand. This paper presents a caching algorithm using deep reinforcement learning (DRL) that controls the caching policy with the content time-to-live (TTL) values and elastically adjusts the cache size according to a dynamically changing environment to maximize the utility-minus-cost objective. We show that, under non-stationary traffic scenarios, our DRL-based approach outperforms the conventional algorithms known to be optimal under stationary traffic scenarios. |
doi_str_mv | 10.1109/ICTC55196.2022.9952648 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9952648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9952648</ieee_id><sourcerecordid>9952648</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-65f0ac654f7d08c5985e0a42eace417f133f9fb7839968c070e9f232c9321dfb3</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMgOLc9gSB5gdacpElzrkTi1EFRGNv1yLITjXbtSAvi2ztwV__FBx_fz9gdiBJA4P3SrZ3WgKaUQsoSUUtT2Qt2A8boClFhfckmEowsQFZwzebD8CWEUGAtKjthD4vWD2MK_I3Gnz5_c-fDJ3HXd2PuW74ZUvfBn4iOfEWpi30OdKBu5A353J3YjF1F3w40P--UbZ4Xa_daNO8vS_fYFAnAjoXRUfhwSor1Xtig0WoSvpLkA1VQR1AqYtzVViEaG0QtCKNUMqCSsI87NWW3_95ERNtjTgeff7fnv-oPXhdJvw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Elastic Network Cache Control Using Deep Reinforcement Learning</title><source>IEEE Xplore All Conference Series</source><creator>Cho, Chunglae ; Shin, Seungjae ; Jeon, Hongseok ; Yoon, Seunghyun</creator><creatorcontrib>Cho, Chunglae ; Shin, Seungjae ; Jeon, Hongseok ; Yoon, Seunghyun</creatorcontrib><description>Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the one hand and minimize the cost of leasing the cache storage on the other hand. This paper presents a caching algorithm using deep reinforcement learning (DRL) that controls the caching policy with the content time-to-live (TTL) values and elastically adjusts the cache size according to a dynamically changing environment to maximize the utility-minus-cost objective. We show that, under non-stationary traffic scenarios, our DRL-based approach outperforms the conventional algorithms known to be optimal under stationary traffic scenarios.</description><identifier>EISSN: 2162-1241</identifier><identifier>EISBN: 1665499397</identifier><identifier>EISBN: 9781665499392</identifier><identifier>DOI: 10.1109/ICTC55196.2022.9952648</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cache storage ; Costs ; Deep learning ; deep reinforcement learning ; elastic caching ; Heuristic algorithms ; Information and communication technology ; non-stationary traffic ; Reinforcement learning ; utility-minus-cost maximization ; Virtualization</subject><ispartof>2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 2022, p.1006-1008</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9952648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9952648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cho, Chunglae</creatorcontrib><creatorcontrib>Shin, Seungjae</creatorcontrib><creatorcontrib>Jeon, Hongseok</creatorcontrib><creatorcontrib>Yoon, Seunghyun</creatorcontrib><title>Elastic Network Cache Control Using Deep Reinforcement Learning</title><title>2022 13th International Conference on Information and Communication Technology Convergence (ICTC)</title><addtitle>ICTC</addtitle><description>Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the one hand and minimize the cost of leasing the cache storage on the other hand. This paper presents a caching algorithm using deep reinforcement learning (DRL) that controls the caching policy with the content time-to-live (TTL) values and elastically adjusts the cache size according to a dynamically changing environment to maximize the utility-minus-cost objective. We show that, under non-stationary traffic scenarios, our DRL-based approach outperforms the conventional algorithms known to be optimal under stationary traffic scenarios.</description><subject>Cache storage</subject><subject>Costs</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>elastic caching</subject><subject>Heuristic algorithms</subject><subject>Information and communication technology</subject><subject>non-stationary traffic</subject><subject>Reinforcement learning</subject><subject>utility-minus-cost maximization</subject><subject>Virtualization</subject><issn>2162-1241</issn><isbn>1665499397</isbn><isbn>9781665499392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMgOLc9gSB5gdacpElzrkTi1EFRGNv1yLITjXbtSAvi2ztwV__FBx_fz9gdiBJA4P3SrZ3WgKaUQsoSUUtT2Qt2A8boClFhfckmEowsQFZwzebD8CWEUGAtKjthD4vWD2MK_I3Gnz5_c-fDJ3HXd2PuW74ZUvfBn4iOfEWpi30OdKBu5A353J3YjF1F3w40P--UbZ4Xa_daNO8vS_fYFAnAjoXRUfhwSor1Xtig0WoSvpLkA1VQR1AqYtzVViEaG0QtCKNUMqCSsI87NWW3_95ERNtjTgeff7fnv-oPXhdJvw</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Cho, Chunglae</creator><creator>Shin, Seungjae</creator><creator>Jeon, Hongseok</creator><creator>Yoon, Seunghyun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221019</creationdate><title>Elastic Network Cache Control Using Deep Reinforcement Learning</title><author>Cho, Chunglae ; Shin, Seungjae ; Jeon, Hongseok ; Yoon, Seunghyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-65f0ac654f7d08c5985e0a42eace417f133f9fb7839968c070e9f232c9321dfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cache storage</topic><topic>Costs</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>elastic caching</topic><topic>Heuristic algorithms</topic><topic>Information and communication technology</topic><topic>non-stationary traffic</topic><topic>Reinforcement learning</topic><topic>utility-minus-cost maximization</topic><topic>Virtualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Chunglae</creatorcontrib><creatorcontrib>Shin, Seungjae</creatorcontrib><creatorcontrib>Jeon, Hongseok</creatorcontrib><creatorcontrib>Yoon, Seunghyun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Chunglae</au><au>Shin, Seungjae</au><au>Jeon, Hongseok</au><au>Yoon, Seunghyun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Elastic Network Cache Control Using Deep Reinforcement Learning</atitle><btitle>2022 13th International Conference on Information and Communication Technology Convergence (ICTC)</btitle><stitle>ICTC</stitle><date>2022-10-19</date><risdate>2022</risdate><spage>1006</spage><epage>1008</epage><pages>1006-1008</pages><eissn>2162-1241</eissn><eisbn>1665499397</eisbn><eisbn>9781665499392</eisbn><abstract>Thanks to the development of virtualization technology, content service providers can flexibly lease virtualized resources from infrastructure service providers when they deploy the cache nodes in edge networks. As a result, they have two orthogonal objectives: to maximize the caching utility on the one hand and minimize the cost of leasing the cache storage on the other hand. This paper presents a caching algorithm using deep reinforcement learning (DRL) that controls the caching policy with the content time-to-live (TTL) values and elastically adjusts the cache size according to a dynamically changing environment to maximize the utility-minus-cost objective. We show that, under non-stationary traffic scenarios, our DRL-based approach outperforms the conventional algorithms known to be optimal under stationary traffic scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICTC55196.2022.9952648</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2162-1241 |
ispartof | 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 2022, p.1006-1008 |
issn | 2162-1241 |
language | eng |
recordid | cdi_ieee_primary_9952648 |
source | IEEE Xplore All Conference Series |
subjects | Cache storage Costs Deep learning deep reinforcement learning elastic caching Heuristic algorithms Information and communication technology non-stationary traffic Reinforcement learning utility-minus-cost maximization Virtualization |
title | Elastic Network Cache Control Using Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Elastic%20Network%20Cache%20Control%20Using%20Deep%20Reinforcement%20Learning&rft.btitle=2022%2013th%20International%20Conference%20on%20Information%20and%20Communication%20Technology%20Convergence%20(ICTC)&rft.au=Cho,%20Chunglae&rft.date=2022-10-19&rft.spage=1006&rft.epage=1008&rft.pages=1006-1008&rft.eissn=2162-1241&rft_id=info:doi/10.1109/ICTC55196.2022.9952648&rft.eisbn=1665499397&rft.eisbn_list=9781665499392&rft_dat=%3Cieee_CHZPO%3E9952648%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-65f0ac654f7d08c5985e0a42eace417f133f9fb7839968c070e9f232c9321dfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9952648&rfr_iscdi=true |