Loading…
Evaluation of a multithreaded architecture for cellular computing
Cyclops is a new architecture for high-performance parallel computers that is being developed at the IBM T. J. Watson Research Center. The basic cell of this architecture is a single-chip SMP (symmetric multiprocessor) system with multiple threads of execution, embedded memory and integrated communi...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cyclops is a new architecture for high-performance parallel computers that is being developed at the IBM T. J. Watson Research Center. The basic cell of this architecture is a single-chip SMP (symmetric multiprocessor) system with multiple threads of execution, embedded memory and integrated communications hardware. Massive intra-chip parallelism is used to tolerate memory and functional unit latencies. Large systems with thousands of chips can be built by replicating this basic cell in a regular pattern. In this paper, we describe the Cyclops architecture and evaluate two of its new hardware features: a memory hierarchy with a flexible cache organization and fast barrier hardware. Our experiments with the STREAM benchmark show that a particular design can achieve a sustainable memory bandwidth of 40 GB/s, equal to the peak hardware bandwidth and similar to the performance of a 128-processor SGI Origin 3800. For small vectors, we have observed in-cache bandwidth above 80 GB/s. We also show that the fast barrier hardware can improve the performance of the Splash-2 FFT kernel by up to 10%. Our results demonstrate that the Cyclops approach of integrating a large number of simple processing elements and multiple memory banks in the same chip is an effective alternative for designing high-performance systems. |
---|---|
ISSN: | 1530-0897 2378-203X |
DOI: | 10.1109/HPCA.2002.995720 |