Loading…

An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG

The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lemp...

Full description

Saved in:
Bibliographic Details
Main Authors: Akbugday, Burak, Akan, Aydin, Pehlivan, Sude, Sadighzadeh, Reza
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Akbugday, Burak
Akan, Aydin
Pehlivan, Sude
Sadighzadeh, Reza
description The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.
doi_str_mv 10.1109/TIPTEKNO56568.2022.9960190
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9960190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9960190</ieee_id><sourcerecordid>9960190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-e4f870c7d1c8cab5812e7fae066beb4ca717eb9f5a3a21dea4ca233b8ec17e7b3</originalsourceid><addsrcrecordid>eNotkEtLAzEYRaMgWGp_gZvgfmoek9ey1OkDh1ZwdFsy6ReJTDMyySz67y20q8s9F87iIvRCyZxSYl6b7UdTve_2Qgqp54wwNjdGEmrIHZoZpamUohQlZ-weTZjUqlBK80c0S-mXEMIE5czwCfpeRLxICVI6Qcy497gOEeyAbTziXR-7a1uBzeMACft-wG-QweUQf_C-89blfjjjzxxOYzcmHCKuqvUTevC2SzC75RR9rapmuSnq_Xq7XNRFoJznAkqvFXHqSJ12thWaMlDeApGyhbZ0VlEFrfHCcsvoEewFMc5bDe4yqJZP0fPVGwDg8DeEkx3Oh9sT_B_n51U4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</title><source>IEEE Xplore All Conference Series</source><creator>Akbugday, Burak ; Akan, Aydin ; Pehlivan, Sude ; Sadighzadeh, Reza</creator><creatorcontrib>Akbugday, Burak ; Akan, Aydin ; Pehlivan, Sude ; Sadighzadeh, Reza</creatorcontrib><description>The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.</description><identifier>EISSN: 2687-7783</identifier><identifier>EISBN: 9781665454322</identifier><identifier>EISBN: 1665454326</identifier><identifier>DOI: 10.1109/TIPTEKNO56568.2022.9960190</identifier><language>eng</language><publisher>IEEE</publisher><subject>electroencephalogram (EEG) ; Electroencephalography ; Feature extraction ; Fractals ; Higuchi fractal dimension ; Hjorth parameters ; Lempel-Ziv complexity ; machine learning ; Mood ; neuromarketing ; Olfactory ; olfactory stimulus ; Protocols ; Support vector machines</subject><ispartof>2022 Medical Technologies Congress (TIPTEKNO), 2022, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9960190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9960190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akbugday, Burak</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><creatorcontrib>Pehlivan, Sude</creatorcontrib><creatorcontrib>Sadighzadeh, Reza</creatorcontrib><title>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</title><title>2022 Medical Technologies Congress (TIPTEKNO)</title><addtitle>TIPTEKNO</addtitle><description>The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.</description><subject>electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Fractals</subject><subject>Higuchi fractal dimension</subject><subject>Hjorth parameters</subject><subject>Lempel-Ziv complexity</subject><subject>machine learning</subject><subject>Mood</subject><subject>neuromarketing</subject><subject>Olfactory</subject><subject>olfactory stimulus</subject><subject>Protocols</subject><subject>Support vector machines</subject><issn>2687-7783</issn><isbn>9781665454322</isbn><isbn>1665454326</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLAzEYRaMgWGp_gZvgfmoek9ey1OkDh1ZwdFsy6ReJTDMyySz67y20q8s9F87iIvRCyZxSYl6b7UdTve_2Qgqp54wwNjdGEmrIHZoZpamUohQlZ-weTZjUqlBK80c0S-mXEMIE5czwCfpeRLxICVI6Qcy497gOEeyAbTziXR-7a1uBzeMACft-wG-QweUQf_C-89blfjjjzxxOYzcmHCKuqvUTevC2SzC75RR9rapmuSnq_Xq7XNRFoJznAkqvFXHqSJ12thWaMlDeApGyhbZ0VlEFrfHCcsvoEewFMc5bDe4yqJZP0fPVGwDg8DeEkx3Oh9sT_B_n51U4</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Akbugday, Burak</creator><creator>Akan, Aydin</creator><creator>Pehlivan, Sude</creator><creator>Sadighzadeh, Reza</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221031</creationdate><title>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</title><author>Akbugday, Burak ; Akan, Aydin ; Pehlivan, Sude ; Sadighzadeh, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-e4f870c7d1c8cab5812e7fae066beb4ca717eb9f5a3a21dea4ca233b8ec17e7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Fractals</topic><topic>Higuchi fractal dimension</topic><topic>Hjorth parameters</topic><topic>Lempel-Ziv complexity</topic><topic>machine learning</topic><topic>Mood</topic><topic>neuromarketing</topic><topic>Olfactory</topic><topic>olfactory stimulus</topic><topic>Protocols</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Akbugday, Burak</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><creatorcontrib>Pehlivan, Sude</creatorcontrib><creatorcontrib>Sadighzadeh, Reza</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akbugday, Burak</au><au>Akan, Aydin</au><au>Pehlivan, Sude</au><au>Sadighzadeh, Reza</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</atitle><btitle>2022 Medical Technologies Congress (TIPTEKNO)</btitle><stitle>TIPTEKNO</stitle><date>2022-10-31</date><risdate>2022</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2687-7783</eissn><eisbn>9781665454322</eisbn><eisbn>1665454326</eisbn><abstract>The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.</abstract><pub>IEEE</pub><doi>10.1109/TIPTEKNO56568.2022.9960190</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2687-7783
ispartof 2022 Medical Technologies Congress (TIPTEKNO), 2022, p.1-4
issn 2687-7783
language eng
recordid cdi_ieee_primary_9960190
source IEEE Xplore All Conference Series
subjects electroencephalogram (EEG)
Electroencephalography
Feature extraction
Fractals
Higuchi fractal dimension
Hjorth parameters
Lempel-Ziv complexity
machine learning
Mood
neuromarketing
Olfactory
olfactory stimulus
Protocols
Support vector machines
title An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Assessment%20of%20Linear%20and%20Nonlinear%20Features%20for%20Detecting%20Olfactory%20Stimulus%20in%20EEG&rft.btitle=2022%20Medical%20Technologies%20Congress%20(TIPTEKNO)&rft.au=Akbugday,%20Burak&rft.date=2022-10-31&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2687-7783&rft_id=info:doi/10.1109/TIPTEKNO56568.2022.9960190&rft.eisbn=9781665454322&rft.eisbn_list=1665454326&rft_dat=%3Cieee_CHZPO%3E9960190%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-e4f870c7d1c8cab5812e7fae066beb4ca717eb9f5a3a21dea4ca233b8ec17e7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9960190&rfr_iscdi=true