Loading…
An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG
The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lemp...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Akbugday, Burak Akan, Aydin Pehlivan, Sude Sadighzadeh, Reza |
description | The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels. |
doi_str_mv | 10.1109/TIPTEKNO56568.2022.9960190 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9960190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9960190</ieee_id><sourcerecordid>9960190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-e4f870c7d1c8cab5812e7fae066beb4ca717eb9f5a3a21dea4ca233b8ec17e7b3</originalsourceid><addsrcrecordid>eNotkEtLAzEYRaMgWGp_gZvgfmoek9ey1OkDh1ZwdFsy6ReJTDMyySz67y20q8s9F87iIvRCyZxSYl6b7UdTve_2Qgqp54wwNjdGEmrIHZoZpamUohQlZ-weTZjUqlBK80c0S-mXEMIE5czwCfpeRLxICVI6Qcy497gOEeyAbTziXR-7a1uBzeMACft-wG-QweUQf_C-89blfjjjzxxOYzcmHCKuqvUTevC2SzC75RR9rapmuSnq_Xq7XNRFoJznAkqvFXHqSJ12thWaMlDeApGyhbZ0VlEFrfHCcsvoEewFMc5bDe4yqJZP0fPVGwDg8DeEkx3Oh9sT_B_n51U4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</title><source>IEEE Xplore All Conference Series</source><creator>Akbugday, Burak ; Akan, Aydin ; Pehlivan, Sude ; Sadighzadeh, Reza</creator><creatorcontrib>Akbugday, Burak ; Akan, Aydin ; Pehlivan, Sude ; Sadighzadeh, Reza</creatorcontrib><description>The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.</description><identifier>EISSN: 2687-7783</identifier><identifier>EISBN: 9781665454322</identifier><identifier>EISBN: 1665454326</identifier><identifier>DOI: 10.1109/TIPTEKNO56568.2022.9960190</identifier><language>eng</language><publisher>IEEE</publisher><subject>electroencephalogram (EEG) ; Electroencephalography ; Feature extraction ; Fractals ; Higuchi fractal dimension ; Hjorth parameters ; Lempel-Ziv complexity ; machine learning ; Mood ; neuromarketing ; Olfactory ; olfactory stimulus ; Protocols ; Support vector machines</subject><ispartof>2022 Medical Technologies Congress (TIPTEKNO), 2022, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9960190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9960190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akbugday, Burak</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><creatorcontrib>Pehlivan, Sude</creatorcontrib><creatorcontrib>Sadighzadeh, Reza</creatorcontrib><title>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</title><title>2022 Medical Technologies Congress (TIPTEKNO)</title><addtitle>TIPTEKNO</addtitle><description>The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.</description><subject>electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Fractals</subject><subject>Higuchi fractal dimension</subject><subject>Hjorth parameters</subject><subject>Lempel-Ziv complexity</subject><subject>machine learning</subject><subject>Mood</subject><subject>neuromarketing</subject><subject>Olfactory</subject><subject>olfactory stimulus</subject><subject>Protocols</subject><subject>Support vector machines</subject><issn>2687-7783</issn><isbn>9781665454322</isbn><isbn>1665454326</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLAzEYRaMgWGp_gZvgfmoek9ey1OkDh1ZwdFsy6ReJTDMyySz67y20q8s9F87iIvRCyZxSYl6b7UdTve_2Qgqp54wwNjdGEmrIHZoZpamUohQlZ-weTZjUqlBK80c0S-mXEMIE5czwCfpeRLxICVI6Qcy497gOEeyAbTziXR-7a1uBzeMACft-wG-QweUQf_C-89blfjjjzxxOYzcmHCKuqvUTevC2SzC75RR9rapmuSnq_Xq7XNRFoJznAkqvFXHqSJ12thWaMlDeApGyhbZ0VlEFrfHCcsvoEewFMc5bDe4yqJZP0fPVGwDg8DeEkx3Oh9sT_B_n51U4</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Akbugday, Burak</creator><creator>Akan, Aydin</creator><creator>Pehlivan, Sude</creator><creator>Sadighzadeh, Reza</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221031</creationdate><title>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</title><author>Akbugday, Burak ; Akan, Aydin ; Pehlivan, Sude ; Sadighzadeh, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-e4f870c7d1c8cab5812e7fae066beb4ca717eb9f5a3a21dea4ca233b8ec17e7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Fractals</topic><topic>Higuchi fractal dimension</topic><topic>Hjorth parameters</topic><topic>Lempel-Ziv complexity</topic><topic>machine learning</topic><topic>Mood</topic><topic>neuromarketing</topic><topic>Olfactory</topic><topic>olfactory stimulus</topic><topic>Protocols</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Akbugday, Burak</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><creatorcontrib>Pehlivan, Sude</creatorcontrib><creatorcontrib>Sadighzadeh, Reza</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akbugday, Burak</au><au>Akan, Aydin</au><au>Pehlivan, Sude</au><au>Sadighzadeh, Reza</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG</atitle><btitle>2022 Medical Technologies Congress (TIPTEKNO)</btitle><stitle>TIPTEKNO</stitle><date>2022-10-31</date><risdate>2022</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2687-7783</eissn><eisbn>9781665454322</eisbn><eisbn>1665454326</eisbn><abstract>The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.</abstract><pub>IEEE</pub><doi>10.1109/TIPTEKNO56568.2022.9960190</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2687-7783 |
ispartof | 2022 Medical Technologies Congress (TIPTEKNO), 2022, p.1-4 |
issn | 2687-7783 |
language | eng |
recordid | cdi_ieee_primary_9960190 |
source | IEEE Xplore All Conference Series |
subjects | electroencephalogram (EEG) Electroencephalography Feature extraction Fractals Higuchi fractal dimension Hjorth parameters Lempel-Ziv complexity machine learning Mood neuromarketing Olfactory olfactory stimulus Protocols Support vector machines |
title | An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Assessment%20of%20Linear%20and%20Nonlinear%20Features%20for%20Detecting%20Olfactory%20Stimulus%20in%20EEG&rft.btitle=2022%20Medical%20Technologies%20Congress%20(TIPTEKNO)&rft.au=Akbugday,%20Burak&rft.date=2022-10-31&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2687-7783&rft_id=info:doi/10.1109/TIPTEKNO56568.2022.9960190&rft.eisbn=9781665454322&rft.eisbn_list=1665454326&rft_dat=%3Cieee_CHZPO%3E9960190%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-e4f870c7d1c8cab5812e7fae066beb4ca717eb9f5a3a21dea4ca233b8ec17e7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9960190&rfr_iscdi=true |