Loading…
Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves
Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensin...
Saved in:
Published in: | IEEE access 2022, p.1-1 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | |
creator | Seppi, Carlo Huck, Antal Hamidi, Arsham Schnider, Eva Filipozzi, Massimiliano Rauter, Georg Zam, Azhar Cattin, Philippe C. |
description | Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process. |
doi_str_mv | 10.1109/ACCESS.2022.3225651 |
format | article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9966604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9966604</ieee_id><sourcerecordid>9966604</sourcerecordid><originalsourceid>FETCH-ieee_primary_99666043</originalsourceid><addsrcrecordid>eNp9jEELgjAYhkcQJOUv8LI_oG0zV3ZbZnXwZhCdZNlnLczJZlH_PqHOPZcXnhcehDxKAkpJPBVJkuZ5wAhjQchYxCM6QA6jPPbDKOQj5Fp7Iz2LXkVzB2Ur3QAWp1p2Sjd4DW13xaJtjX6p-9dVRt9xapZHscWZtGD8CzRgZAdnLEr9sJ0q8UE-wU7QsJK1Bfe3Y-Rt0n2y8xUAFK3pi-ZdxDHnnMzC_-8HrrM83w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</title><source>IEEE Xplore Open Access Journals</source><creator>Seppi, Carlo ; Huck, Antal ; Hamidi, Arsham ; Schnider, Eva ; Filipozzi, Massimiliano ; Rauter, Georg ; Zam, Azhar ; Cattin, Philippe C.</creator><creatorcontrib>Seppi, Carlo ; Huck, Antal ; Hamidi, Arsham ; Schnider, Eva ; Filipozzi, Massimiliano ; Rauter, Georg ; Zam, Azhar ; Cattin, Philippe C.</creatorcontrib><description>Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3225651</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic Feedback ; Depth Control ; Laser Ablation ; Neural Network</subject><ispartof>IEEE access, 2022, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5906-3546 ; 0000-0001-9089-8181 ; 0000-0002-3138-8939 ; 0000-0002-0226-9519 ; 0000-0001-8785-2713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9966604$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Seppi, Carlo</creatorcontrib><creatorcontrib>Huck, Antal</creatorcontrib><creatorcontrib>Hamidi, Arsham</creatorcontrib><creatorcontrib>Schnider, Eva</creatorcontrib><creatorcontrib>Filipozzi, Massimiliano</creatorcontrib><creatorcontrib>Rauter, Georg</creatorcontrib><creatorcontrib>Zam, Azhar</creatorcontrib><creatorcontrib>Cattin, Philippe C.</creatorcontrib><title>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</title><title>IEEE access</title><addtitle>Access</addtitle><description>Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.</description><subject>Acoustic Feedback</subject><subject>Depth Control</subject><subject>Laser Ablation</subject><subject>Neural Network</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNp9jEELgjAYhkcQJOUv8LI_oG0zV3ZbZnXwZhCdZNlnLczJZlH_PqHOPZcXnhcehDxKAkpJPBVJkuZ5wAhjQchYxCM6QA6jPPbDKOQj5Fp7Iz2LXkVzB2Ur3QAWp1p2Sjd4DW13xaJtjX6p-9dVRt9xapZHscWZtGD8CzRgZAdnLEr9sJ0q8UE-wU7QsJK1Bfe3Y-Rt0n2y8xUAFK3pi-ZdxDHnnMzC_-8HrrM83w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Seppi, Carlo</creator><creator>Huck, Antal</creator><creator>Hamidi, Arsham</creator><creator>Schnider, Eva</creator><creator>Filipozzi, Massimiliano</creator><creator>Rauter, Georg</creator><creator>Zam, Azhar</creator><creator>Cattin, Philippe C.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-5906-3546</orcidid><orcidid>https://orcid.org/0000-0001-9089-8181</orcidid><orcidid>https://orcid.org/0000-0002-3138-8939</orcidid><orcidid>https://orcid.org/0000-0002-0226-9519</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid></search><sort><creationdate>2022</creationdate><title>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</title><author>Seppi, Carlo ; Huck, Antal ; Hamidi, Arsham ; Schnider, Eva ; Filipozzi, Massimiliano ; Rauter, Georg ; Zam, Azhar ; Cattin, Philippe C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_99666043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic Feedback</topic><topic>Depth Control</topic><topic>Laser Ablation</topic><topic>Neural Network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seppi, Carlo</creatorcontrib><creatorcontrib>Huck, Antal</creatorcontrib><creatorcontrib>Hamidi, Arsham</creatorcontrib><creatorcontrib>Schnider, Eva</creatorcontrib><creatorcontrib>Filipozzi, Massimiliano</creatorcontrib><creatorcontrib>Rauter, Georg</creatorcontrib><creatorcontrib>Zam, Azhar</creatorcontrib><creatorcontrib>Cattin, Philippe C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seppi, Carlo</au><au>Huck, Antal</au><au>Hamidi, Arsham</au><au>Schnider, Eva</au><au>Filipozzi, Massimiliano</au><au>Rauter, Georg</au><au>Zam, Azhar</au><au>Cattin, Philippe C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3225651</doi><orcidid>https://orcid.org/0000-0002-5906-3546</orcidid><orcidid>https://orcid.org/0000-0001-9089-8181</orcidid><orcidid>https://orcid.org/0000-0002-3138-8939</orcidid><orcidid>https://orcid.org/0000-0002-0226-9519</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2169-3536 |
ispartof | IEEE access, 2022, p.1-1 |
issn | 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9966604 |
source | IEEE Xplore Open Access Journals |
subjects | Acoustic Feedback Depth Control Laser Ablation Neural Network |
title | Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20Ablation%20Depth%20Approximation%20from%20Er:YAG%20Laser-generated%20Acoustic%20Waves&rft.jtitle=IEEE%20access&rft.au=Seppi,%20Carlo&rft.date=2022&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3225651&rft_dat=%3Cieee%3E9966604%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_99666043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9966604&rfr_iscdi=true |