Loading…

Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves

Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, p.1-1
Main Authors: Seppi, Carlo, Huck, Antal, Hamidi, Arsham, Schnider, Eva, Filipozzi, Massimiliano, Rauter, Georg, Zam, Azhar, Cattin, Philippe C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume
creator Seppi, Carlo
Huck, Antal
Hamidi, Arsham
Schnider, Eva
Filipozzi, Massimiliano
Rauter, Georg
Zam, Azhar
Cattin, Philippe C.
description Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.
doi_str_mv 10.1109/ACCESS.2022.3225651
format article
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9966604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9966604</ieee_id><sourcerecordid>9966604</sourcerecordid><originalsourceid>FETCH-ieee_primary_99666043</originalsourceid><addsrcrecordid>eNp9jEELgjAYhkcQJOUv8LI_oG0zV3ZbZnXwZhCdZNlnLczJZlH_PqHOPZcXnhcehDxKAkpJPBVJkuZ5wAhjQchYxCM6QA6jPPbDKOQj5Fp7Iz2LXkVzB2Ur3QAWp1p2Sjd4DW13xaJtjX6p-9dVRt9xapZHscWZtGD8CzRgZAdnLEr9sJ0q8UE-wU7QsJK1Bfe3Y-Rt0n2y8xUAFK3pi-ZdxDHnnMzC_-8HrrM83w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</title><source>IEEE Xplore Open Access Journals</source><creator>Seppi, Carlo ; Huck, Antal ; Hamidi, Arsham ; Schnider, Eva ; Filipozzi, Massimiliano ; Rauter, Georg ; Zam, Azhar ; Cattin, Philippe C.</creator><creatorcontrib>Seppi, Carlo ; Huck, Antal ; Hamidi, Arsham ; Schnider, Eva ; Filipozzi, Massimiliano ; Rauter, Georg ; Zam, Azhar ; Cattin, Philippe C.</creatorcontrib><description>Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3225651</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic Feedback ; Depth Control ; Laser Ablation ; Neural Network</subject><ispartof>IEEE access, 2022, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5906-3546 ; 0000-0001-9089-8181 ; 0000-0002-3138-8939 ; 0000-0002-0226-9519 ; 0000-0001-8785-2713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9966604$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Seppi, Carlo</creatorcontrib><creatorcontrib>Huck, Antal</creatorcontrib><creatorcontrib>Hamidi, Arsham</creatorcontrib><creatorcontrib>Schnider, Eva</creatorcontrib><creatorcontrib>Filipozzi, Massimiliano</creatorcontrib><creatorcontrib>Rauter, Georg</creatorcontrib><creatorcontrib>Zam, Azhar</creatorcontrib><creatorcontrib>Cattin, Philippe C.</creatorcontrib><title>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</title><title>IEEE access</title><addtitle>Access</addtitle><description>Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.</description><subject>Acoustic Feedback</subject><subject>Depth Control</subject><subject>Laser Ablation</subject><subject>Neural Network</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNp9jEELgjAYhkcQJOUv8LI_oG0zV3ZbZnXwZhCdZNlnLczJZlH_PqHOPZcXnhcehDxKAkpJPBVJkuZ5wAhjQchYxCM6QA6jPPbDKOQj5Fp7Iz2LXkVzB2Ur3QAWp1p2Sjd4DW13xaJtjX6p-9dVRt9xapZHscWZtGD8CzRgZAdnLEr9sJ0q8UE-wU7QsJK1Bfe3Y-Rt0n2y8xUAFK3pi-ZdxDHnnMzC_-8HrrM83w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Seppi, Carlo</creator><creator>Huck, Antal</creator><creator>Hamidi, Arsham</creator><creator>Schnider, Eva</creator><creator>Filipozzi, Massimiliano</creator><creator>Rauter, Georg</creator><creator>Zam, Azhar</creator><creator>Cattin, Philippe C.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-5906-3546</orcidid><orcidid>https://orcid.org/0000-0001-9089-8181</orcidid><orcidid>https://orcid.org/0000-0002-3138-8939</orcidid><orcidid>https://orcid.org/0000-0002-0226-9519</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid></search><sort><creationdate>2022</creationdate><title>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</title><author>Seppi, Carlo ; Huck, Antal ; Hamidi, Arsham ; Schnider, Eva ; Filipozzi, Massimiliano ; Rauter, Georg ; Zam, Azhar ; Cattin, Philippe C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_99666043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic Feedback</topic><topic>Depth Control</topic><topic>Laser Ablation</topic><topic>Neural Network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seppi, Carlo</creatorcontrib><creatorcontrib>Huck, Antal</creatorcontrib><creatorcontrib>Hamidi, Arsham</creatorcontrib><creatorcontrib>Schnider, Eva</creatorcontrib><creatorcontrib>Filipozzi, Massimiliano</creatorcontrib><creatorcontrib>Rauter, Georg</creatorcontrib><creatorcontrib>Zam, Azhar</creatorcontrib><creatorcontrib>Cattin, Philippe C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seppi, Carlo</au><au>Huck, Antal</au><au>Hamidi, Arsham</au><au>Schnider, Eva</au><au>Filipozzi, Massimiliano</au><au>Rauter, Georg</au><au>Zam, Azhar</au><au>Cattin, Philippe C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient's healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3225651</doi><orcidid>https://orcid.org/0000-0002-5906-3546</orcidid><orcidid>https://orcid.org/0000-0001-9089-8181</orcidid><orcidid>https://orcid.org/0000-0002-3138-8939</orcidid><orcidid>https://orcid.org/0000-0002-0226-9519</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2169-3536
ispartof IEEE access, 2022, p.1-1
issn 2169-3536
language eng
recordid cdi_ieee_primary_9966604
source IEEE Xplore Open Access Journals
subjects Acoustic Feedback
Depth Control
Laser Ablation
Neural Network
title Bone Ablation Depth Approximation from Er:YAG Laser-generated Acoustic Waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20Ablation%20Depth%20Approximation%20from%20Er:YAG%20Laser-generated%20Acoustic%20Waves&rft.jtitle=IEEE%20access&rft.au=Seppi,%20Carlo&rft.date=2022&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3225651&rft_dat=%3Cieee%3E9966604%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_99666043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9966604&rfr_iscdi=true