An Improved Stability Criterion for Discrete-Time Linear Systems With Two Additive Time-Varying Delays
In this paper, the stability analysis problem for discrete-time linear systems with additive time-varying delays is further investigated. In the first place, an augmented Lyapunov-Krasovskii functional (LKF) based on delay interval decomposition is designed, where some augmented vectors are selected...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.126787-126801 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the stability analysis problem for discrete-time linear systems with additive time-varying delays is further investigated. In the first place, an augmented Lyapunov-Krasovskii functional (LKF) based on delay interval decomposition is designed, where some augmented vectors are selected to supplement the coupling relationships between some system state variables and different delay subintervals. In the second place, based on the augmented LKF, a new delay-dependent stability criterion is derived vai a general summation inequality lemma. The stability criterion is derived in the form of linear matrix inequality (LMI), which can be solved quickly by Matlab LMI-Tool. In the end, the effectiveness of the proposed method is illustrated by some common numerical examples. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3226698 |