Loading…
Lettuce Root Development and Monitoring System Using Machine Learning in Hydroponics
Roots of a hydroponically grown lettuce are usually susceptible to waterborne diseases like Pythium disease (root rot). Visual inspection of a plant root is needed in a hydroponic system to determine the health status of the plant. However, removing the plants in its growing environment will stress...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | De Los Santos, Bryan B. Don, Anna Grace M. Gotengco, Angelito A. Millena, Jose Luis M. Romero, Rhaizel Gel C. Agustin, Eugene V. Beano, Mary Grace P. Mandayo, Ericson A. Medina, Oliver A. Sigue, Anna-Liza F. |
description | Roots of a hydroponically grown lettuce are usually susceptible to waterborne diseases like Pythium disease (root rot). Visual inspection of a plant root is needed in a hydroponic system to determine the health status of the plant. However, removing the plants in its growing environment will stress the plants that can cause stunted growth, and is susceptible to further complications once the roots are exposed outside the environment. Also, studying the development of the lettuce roots on its freshness could help to set standards in determining its shelf life and could lead to a longer life. The project intends to develop an automated root monitoring system for detecting root rot and changing water temperature to avoid extreme heat that damages the root system, affecting the entire plant. The Peltier module was employed to keep the water temperature stable between 18°C - 26°C. If the water temperature exceeds this range, the system will react based on what is best for the plant. The researchers used a camera to monitor the roots across the three grow boxes for the root detecting method. The researchers also implemented image pre-processing, specifically cropping and resizing, to improve image quality in preparation for image processing, and the Decision Tree method for machine learning. The model detected root rot with 91 % accuracy. The system was able to accurately identify and locate roots as well as predict their health status. |
doi_str_mv | 10.1109/TENCON55691.2022.9977465 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9977465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9977465</ieee_id><sourcerecordid>9977465</sourcerecordid><originalsourceid>FETCH-LOGICAL-i485-250110cc3d6888e9ff9765e05fd38c4809a150621315e273c748ef28eeb737453</originalsourceid><addsrcrecordid>eNotUNtKw0AUXAXBWvsFvuwPJO4lZy-PEqsV0hY0Ppe4OdGVZhOyUcjfm2LnZZiBGZghhHKWcs7sfbne5fsdgLI8FUyI1FqtMwUX5IYrBRkwC_aSLAQHm8hZXpNVjN9shmKCGb0gZYHj-OOQvnbdSB_xF49d32IYaRVquu2CH7vBh0_6NsURW_oeT2JbuS8fkBZYDeFk-EA3Uz10_Rxw8ZZcNdUx4urMS1I-rct8kxT755f8oUh8ZiARwOYVzslaGWPQNo3VCpBBU0vjMsNsxYEpwSUHFFo6nRlshEH80FJnIJfk7r_WI-KhH3xbDdPh_IH8A0GxUTs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lettuce Root Development and Monitoring System Using Machine Learning in Hydroponics</title><source>IEEE Xplore All Conference Series</source><creator>De Los Santos, Bryan B. ; Don, Anna Grace M. ; Gotengco, Angelito A. ; Millena, Jose Luis M. ; Romero, Rhaizel Gel C. ; Agustin, Eugene V. ; Beano, Mary Grace P. ; Mandayo, Ericson A. ; Medina, Oliver A. ; Sigue, Anna-Liza F.</creator><creatorcontrib>De Los Santos, Bryan B. ; Don, Anna Grace M. ; Gotengco, Angelito A. ; Millena, Jose Luis M. ; Romero, Rhaizel Gel C. ; Agustin, Eugene V. ; Beano, Mary Grace P. ; Mandayo, Ericson A. ; Medina, Oliver A. ; Sigue, Anna-Liza F.</creatorcontrib><description>Roots of a hydroponically grown lettuce are usually susceptible to waterborne diseases like Pythium disease (root rot). Visual inspection of a plant root is needed in a hydroponic system to determine the health status of the plant. However, removing the plants in its growing environment will stress the plants that can cause stunted growth, and is susceptible to further complications once the roots are exposed outside the environment. Also, studying the development of the lettuce roots on its freshness could help to set standards in determining its shelf life and could lead to a longer life. The project intends to develop an automated root monitoring system for detecting root rot and changing water temperature to avoid extreme heat that damages the root system, affecting the entire plant. The Peltier module was employed to keep the water temperature stable between 18°C - 26°C. If the water temperature exceeds this range, the system will react based on what is best for the plant. The researchers used a camera to monitor the roots across the three grow boxes for the root detecting method. The researchers also implemented image pre-processing, specifically cropping and resizing, to improve image quality in preparation for image processing, and the Decision Tree method for machine learning. The model detected root rot with 91 % accuracy. The system was able to accurately identify and locate roots as well as predict their health status.</description><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1665450959</identifier><identifier>EISBN: 9781665450959</identifier><identifier>DOI: 10.1109/TENCON55691.2022.9977465</identifier><language>eng</language><publisher>IEEE</publisher><subject>agriculture ; Decision Tree ; Hydroponics ; image processing ; lettuce ; Machine learning ; Pythium disease ; root monitoring ; Temperature distribution ; Temperature measurement ; Temperature sensors ; Visualization ; Water heating</subject><ispartof>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 2022, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9977465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9977465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Los Santos, Bryan B.</creatorcontrib><creatorcontrib>Don, Anna Grace M.</creatorcontrib><creatorcontrib>Gotengco, Angelito A.</creatorcontrib><creatorcontrib>Millena, Jose Luis M.</creatorcontrib><creatorcontrib>Romero, Rhaizel Gel C.</creatorcontrib><creatorcontrib>Agustin, Eugene V.</creatorcontrib><creatorcontrib>Beano, Mary Grace P.</creatorcontrib><creatorcontrib>Mandayo, Ericson A.</creatorcontrib><creatorcontrib>Medina, Oliver A.</creatorcontrib><creatorcontrib>Sigue, Anna-Liza F.</creatorcontrib><title>Lettuce Root Development and Monitoring System Using Machine Learning in Hydroponics</title><title>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)</title><addtitle>TENCON</addtitle><description>Roots of a hydroponically grown lettuce are usually susceptible to waterborne diseases like Pythium disease (root rot). Visual inspection of a plant root is needed in a hydroponic system to determine the health status of the plant. However, removing the plants in its growing environment will stress the plants that can cause stunted growth, and is susceptible to further complications once the roots are exposed outside the environment. Also, studying the development of the lettuce roots on its freshness could help to set standards in determining its shelf life and could lead to a longer life. The project intends to develop an automated root monitoring system for detecting root rot and changing water temperature to avoid extreme heat that damages the root system, affecting the entire plant. The Peltier module was employed to keep the water temperature stable between 18°C - 26°C. If the water temperature exceeds this range, the system will react based on what is best for the plant. The researchers used a camera to monitor the roots across the three grow boxes for the root detecting method. The researchers also implemented image pre-processing, specifically cropping and resizing, to improve image quality in preparation for image processing, and the Decision Tree method for machine learning. The model detected root rot with 91 % accuracy. The system was able to accurately identify and locate roots as well as predict their health status.</description><subject>agriculture</subject><subject>Decision Tree</subject><subject>Hydroponics</subject><subject>image processing</subject><subject>lettuce</subject><subject>Machine learning</subject><subject>Pythium disease</subject><subject>root monitoring</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Visualization</subject><subject>Water heating</subject><issn>2159-3450</issn><isbn>1665450959</isbn><isbn>9781665450959</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUNtKw0AUXAXBWvsFvuwPJO4lZy-PEqsV0hY0Ppe4OdGVZhOyUcjfm2LnZZiBGZghhHKWcs7sfbne5fsdgLI8FUyI1FqtMwUX5IYrBRkwC_aSLAQHm8hZXpNVjN9shmKCGb0gZYHj-OOQvnbdSB_xF49d32IYaRVquu2CH7vBh0_6NsURW_oeT2JbuS8fkBZYDeFk-EA3Uz10_Rxw8ZZcNdUx4urMS1I-rct8kxT755f8oUh8ZiARwOYVzslaGWPQNo3VCpBBU0vjMsNsxYEpwSUHFFo6nRlshEH80FJnIJfk7r_WI-KhH3xbDdPh_IH8A0GxUTs</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>De Los Santos, Bryan B.</creator><creator>Don, Anna Grace M.</creator><creator>Gotengco, Angelito A.</creator><creator>Millena, Jose Luis M.</creator><creator>Romero, Rhaizel Gel C.</creator><creator>Agustin, Eugene V.</creator><creator>Beano, Mary Grace P.</creator><creator>Mandayo, Ericson A.</creator><creator>Medina, Oliver A.</creator><creator>Sigue, Anna-Liza F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221101</creationdate><title>Lettuce Root Development and Monitoring System Using Machine Learning in Hydroponics</title><author>De Los Santos, Bryan B. ; Don, Anna Grace M. ; Gotengco, Angelito A. ; Millena, Jose Luis M. ; Romero, Rhaizel Gel C. ; Agustin, Eugene V. ; Beano, Mary Grace P. ; Mandayo, Ericson A. ; Medina, Oliver A. ; Sigue, Anna-Liza F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i485-250110cc3d6888e9ff9765e05fd38c4809a150621315e273c748ef28eeb737453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>agriculture</topic><topic>Decision Tree</topic><topic>Hydroponics</topic><topic>image processing</topic><topic>lettuce</topic><topic>Machine learning</topic><topic>Pythium disease</topic><topic>root monitoring</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Visualization</topic><topic>Water heating</topic><toplevel>online_resources</toplevel><creatorcontrib>De Los Santos, Bryan B.</creatorcontrib><creatorcontrib>Don, Anna Grace M.</creatorcontrib><creatorcontrib>Gotengco, Angelito A.</creatorcontrib><creatorcontrib>Millena, Jose Luis M.</creatorcontrib><creatorcontrib>Romero, Rhaizel Gel C.</creatorcontrib><creatorcontrib>Agustin, Eugene V.</creatorcontrib><creatorcontrib>Beano, Mary Grace P.</creatorcontrib><creatorcontrib>Mandayo, Ericson A.</creatorcontrib><creatorcontrib>Medina, Oliver A.</creatorcontrib><creatorcontrib>Sigue, Anna-Liza F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Los Santos, Bryan B.</au><au>Don, Anna Grace M.</au><au>Gotengco, Angelito A.</au><au>Millena, Jose Luis M.</au><au>Romero, Rhaizel Gel C.</au><au>Agustin, Eugene V.</au><au>Beano, Mary Grace P.</au><au>Mandayo, Ericson A.</au><au>Medina, Oliver A.</au><au>Sigue, Anna-Liza F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lettuce Root Development and Monitoring System Using Machine Learning in Hydroponics</atitle><btitle>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)</btitle><stitle>TENCON</stitle><date>2022-11-01</date><risdate>2022</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2159-3450</eissn><eisbn>1665450959</eisbn><eisbn>9781665450959</eisbn><abstract>Roots of a hydroponically grown lettuce are usually susceptible to waterborne diseases like Pythium disease (root rot). Visual inspection of a plant root is needed in a hydroponic system to determine the health status of the plant. However, removing the plants in its growing environment will stress the plants that can cause stunted growth, and is susceptible to further complications once the roots are exposed outside the environment. Also, studying the development of the lettuce roots on its freshness could help to set standards in determining its shelf life and could lead to a longer life. The project intends to develop an automated root monitoring system for detecting root rot and changing water temperature to avoid extreme heat that damages the root system, affecting the entire plant. The Peltier module was employed to keep the water temperature stable between 18°C - 26°C. If the water temperature exceeds this range, the system will react based on what is best for the plant. The researchers used a camera to monitor the roots across the three grow boxes for the root detecting method. The researchers also implemented image pre-processing, specifically cropping and resizing, to improve image quality in preparation for image processing, and the Decision Tree method for machine learning. The model detected root rot with 91 % accuracy. The system was able to accurately identify and locate roots as well as predict their health status.</abstract><pub>IEEE</pub><doi>10.1109/TENCON55691.2022.9977465</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2159-3450 |
ispartof | TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 2022, p.1-6 |
issn | 2159-3450 |
language | eng |
recordid | cdi_ieee_primary_9977465 |
source | IEEE Xplore All Conference Series |
subjects | agriculture Decision Tree Hydroponics image processing lettuce Machine learning Pythium disease root monitoring Temperature distribution Temperature measurement Temperature sensors Visualization Water heating |
title | Lettuce Root Development and Monitoring System Using Machine Learning in Hydroponics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lettuce%20Root%20Development%20and%20Monitoring%20System%20Using%20Machine%20Learning%20in%20Hydroponics&rft.btitle=TENCON%202022%20-%202022%20IEEE%20Region%2010%20Conference%20(TENCON)&rft.au=De%20Los%20Santos,%20Bryan%20B.&rft.date=2022-11-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2159-3450&rft_id=info:doi/10.1109/TENCON55691.2022.9977465&rft.eisbn=1665450959&rft.eisbn_list=9781665450959&rft_dat=%3Cieee_CHZPO%3E9977465%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i485-250110cc3d6888e9ff9765e05fd38c4809a150621315e273c748ef28eeb737453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9977465&rfr_iscdi=true |