Loading…

Federated Learning in NOMA Networks: Convergence, Energy and Fairness-Based Design

Federated Learning (FL) is a collaborative machine learning (ML) approach, where different nodes in a network contribute to learning the model parameters. In addition, FL provides several attractive features such as data privacy and energy efficiency. Due to its collaborative nature, model parameter...

Full description

Saved in:
Bibliographic Details
Main Authors: Mrad, Ilyes, Samara, Lutfi, Al-Abbasi, Abubakr, Hamila, Ridha, Erbad, Aiman, Kiranyaz, Serkan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 981
container_issue
container_start_page 975
container_title
container_volume
creator Mrad, Ilyes
Samara, Lutfi
Al-Abbasi, Abubakr
Hamila, Ridha
Erbad, Aiman
Kiranyaz, Serkan
description Federated Learning (FL) is a collaborative machine learning (ML) approach, where different nodes in a network contribute to learning the model parameters. In addition, FL provides several attractive features such as data privacy and energy efficiency. Due to its collaborative nature, model parameters among nodes should be efficiently exchanged, while considering the scarce availability of clean spectral slots. In this work, we propose low-power efficient algorithms for FL of model parameters updates. We consider mobile edge nodes connected to a leading node (LD) with practical wireless links, where uplink updates from the nodes to the LD are shared without orthogonalizing the resources. In particular, we adopt a non-orthogonal multiple access (NOMA) uplink scheme, and investigate its effect on the convergence round (CR) of the model updates. Through deriving an analytical expression of the CR, we leverage it to formulate an optimization problem to minimize the total number of communication rounds and maximize the communication fairness among the nodes. We further investigate the performance of our proposed algorithms by considering different factors, including limited per-node energy and node heterogeneity. Monte-Carlo simulations are used to verify the accuracy of our derived expression of the CR. Moreover, through comprehensive simulation, we show that our proposed schemes largely reduce the communication latency between the LD and the nodes, and improve the communication fairness among the nodes.
doi_str_mv 10.1109/PIMRC54779.2022.9977962
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9977962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9977962</ieee_id><sourcerecordid>9977962</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-fe1e768a40e72da7394d9d3502a335c7fd7c180a0bc375538b9ed9c17045fa623</originalsourceid><addsrcrecordid>eNotkM1KAzEURqMgWGufwIV5AKfe5E4mibs6tlrojxQFdyWd3CnxJ5WkKH17B-zqO9_mLA5j1wKGQoC9fZ7OV7UqtbZDCVIOre2wkifsQlSVKg0ofDtlPdm9wipjz9kg53cAQGEMAvbYakKektuT5zNyKYa45SHyxXI-4gva_-7SR77j9S7-UNpSbOiGj2OHB-6i5xMXUqSci3uXO8MD5bCNl-ysdZ-ZBsfts9fJ-KV-KmbLx2k9mhVBIO6LlgTpyrgSSEvvNNrSW48KpENUjW69boQBB5sGtVJoNpa8bYSGUrWukthnV__eQETr7xS-XDqsjwnwDwcgUEU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Federated Learning in NOMA Networks: Convergence, Energy and Fairness-Based Design</title><source>IEEE Xplore All Conference Series</source><creator>Mrad, Ilyes ; Samara, Lutfi ; Al-Abbasi, Abubakr ; Hamila, Ridha ; Erbad, Aiman ; Kiranyaz, Serkan</creator><creatorcontrib>Mrad, Ilyes ; Samara, Lutfi ; Al-Abbasi, Abubakr ; Hamila, Ridha ; Erbad, Aiman ; Kiranyaz, Serkan</creatorcontrib><description>Federated Learning (FL) is a collaborative machine learning (ML) approach, where different nodes in a network contribute to learning the model parameters. In addition, FL provides several attractive features such as data privacy and energy efficiency. Due to its collaborative nature, model parameters among nodes should be efficiently exchanged, while considering the scarce availability of clean spectral slots. In this work, we propose low-power efficient algorithms for FL of model parameters updates. We consider mobile edge nodes connected to a leading node (LD) with practical wireless links, where uplink updates from the nodes to the LD are shared without orthogonalizing the resources. In particular, we adopt a non-orthogonal multiple access (NOMA) uplink scheme, and investigate its effect on the convergence round (CR) of the model updates. Through deriving an analytical expression of the CR, we leverage it to formulate an optimization problem to minimize the total number of communication rounds and maximize the communication fairness among the nodes. We further investigate the performance of our proposed algorithms by considering different factors, including limited per-node energy and node heterogeneity. Monte-Carlo simulations are used to verify the accuracy of our derived expression of the CR. Moreover, through comprehensive simulation, we show that our proposed schemes largely reduce the communication latency between the LD and the nodes, and improve the communication fairness among the nodes.</description><identifier>EISSN: 2166-9589</identifier><identifier>EISBN: 166548053X</identifier><identifier>EISBN: 9781665480536</identifier><identifier>DOI: 10.1109/PIMRC54779.2022.9977962</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; Energy ; Fairness ; Federated learning ; Measurement ; Monte Carlo methods ; NOMA ; Non-Orthogonal Multiple Access (NOMA) ; Simulation ; Wireless communication</subject><ispartof>2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022, p.975-981</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9977962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23908,23909,25117,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9977962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mrad, Ilyes</creatorcontrib><creatorcontrib>Samara, Lutfi</creatorcontrib><creatorcontrib>Al-Abbasi, Abubakr</creatorcontrib><creatorcontrib>Hamila, Ridha</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Kiranyaz, Serkan</creatorcontrib><title>Federated Learning in NOMA Networks: Convergence, Energy and Fairness-Based Design</title><title>2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)</title><addtitle>PIMRC</addtitle><description>Federated Learning (FL) is a collaborative machine learning (ML) approach, where different nodes in a network contribute to learning the model parameters. In addition, FL provides several attractive features such as data privacy and energy efficiency. Due to its collaborative nature, model parameters among nodes should be efficiently exchanged, while considering the scarce availability of clean spectral slots. In this work, we propose low-power efficient algorithms for FL of model parameters updates. We consider mobile edge nodes connected to a leading node (LD) with practical wireless links, where uplink updates from the nodes to the LD are shared without orthogonalizing the resources. In particular, we adopt a non-orthogonal multiple access (NOMA) uplink scheme, and investigate its effect on the convergence round (CR) of the model updates. Through deriving an analytical expression of the CR, we leverage it to formulate an optimization problem to minimize the total number of communication rounds and maximize the communication fairness among the nodes. We further investigate the performance of our proposed algorithms by considering different factors, including limited per-node energy and node heterogeneity. Monte-Carlo simulations are used to verify the accuracy of our derived expression of the CR. Moreover, through comprehensive simulation, we show that our proposed schemes largely reduce the communication latency between the LD and the nodes, and improve the communication fairness among the nodes.</description><subject>Collaboration</subject><subject>Energy</subject><subject>Fairness</subject><subject>Federated learning</subject><subject>Measurement</subject><subject>Monte Carlo methods</subject><subject>NOMA</subject><subject>Non-Orthogonal Multiple Access (NOMA)</subject><subject>Simulation</subject><subject>Wireless communication</subject><issn>2166-9589</issn><isbn>166548053X</isbn><isbn>9781665480536</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEURqMgWGufwIV5AKfe5E4mibs6tlrojxQFdyWd3CnxJ5WkKH17B-zqO9_mLA5j1wKGQoC9fZ7OV7UqtbZDCVIOre2wkifsQlSVKg0ofDtlPdm9wipjz9kg53cAQGEMAvbYakKektuT5zNyKYa45SHyxXI-4gva_-7SR77j9S7-UNpSbOiGj2OHB-6i5xMXUqSci3uXO8MD5bCNl-ysdZ-ZBsfts9fJ-KV-KmbLx2k9mhVBIO6LlgTpyrgSSEvvNNrSW48KpENUjW69boQBB5sGtVJoNpa8bYSGUrWukthnV__eQETr7xS-XDqsjwnwDwcgUEU</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Mrad, Ilyes</creator><creator>Samara, Lutfi</creator><creator>Al-Abbasi, Abubakr</creator><creator>Hamila, Ridha</creator><creator>Erbad, Aiman</creator><creator>Kiranyaz, Serkan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220912</creationdate><title>Federated Learning in NOMA Networks: Convergence, Energy and Fairness-Based Design</title><author>Mrad, Ilyes ; Samara, Lutfi ; Al-Abbasi, Abubakr ; Hamila, Ridha ; Erbad, Aiman ; Kiranyaz, Serkan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-fe1e768a40e72da7394d9d3502a335c7fd7c180a0bc375538b9ed9c17045fa623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collaboration</topic><topic>Energy</topic><topic>Fairness</topic><topic>Federated learning</topic><topic>Measurement</topic><topic>Monte Carlo methods</topic><topic>NOMA</topic><topic>Non-Orthogonal Multiple Access (NOMA)</topic><topic>Simulation</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Mrad, Ilyes</creatorcontrib><creatorcontrib>Samara, Lutfi</creatorcontrib><creatorcontrib>Al-Abbasi, Abubakr</creatorcontrib><creatorcontrib>Hamila, Ridha</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Kiranyaz, Serkan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mrad, Ilyes</au><au>Samara, Lutfi</au><au>Al-Abbasi, Abubakr</au><au>Hamila, Ridha</au><au>Erbad, Aiman</au><au>Kiranyaz, Serkan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Federated Learning in NOMA Networks: Convergence, Energy and Fairness-Based Design</atitle><btitle>2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)</btitle><stitle>PIMRC</stitle><date>2022-09-12</date><risdate>2022</risdate><spage>975</spage><epage>981</epage><pages>975-981</pages><eissn>2166-9589</eissn><eisbn>166548053X</eisbn><eisbn>9781665480536</eisbn><abstract>Federated Learning (FL) is a collaborative machine learning (ML) approach, where different nodes in a network contribute to learning the model parameters. In addition, FL provides several attractive features such as data privacy and energy efficiency. Due to its collaborative nature, model parameters among nodes should be efficiently exchanged, while considering the scarce availability of clean spectral slots. In this work, we propose low-power efficient algorithms for FL of model parameters updates. We consider mobile edge nodes connected to a leading node (LD) with practical wireless links, where uplink updates from the nodes to the LD are shared without orthogonalizing the resources. In particular, we adopt a non-orthogonal multiple access (NOMA) uplink scheme, and investigate its effect on the convergence round (CR) of the model updates. Through deriving an analytical expression of the CR, we leverage it to formulate an optimization problem to minimize the total number of communication rounds and maximize the communication fairness among the nodes. We further investigate the performance of our proposed algorithms by considering different factors, including limited per-node energy and node heterogeneity. Monte-Carlo simulations are used to verify the accuracy of our derived expression of the CR. Moreover, through comprehensive simulation, we show that our proposed schemes largely reduce the communication latency between the LD and the nodes, and improve the communication fairness among the nodes.</abstract><pub>IEEE</pub><doi>10.1109/PIMRC54779.2022.9977962</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2166-9589
ispartof 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022, p.975-981
issn 2166-9589
language eng
recordid cdi_ieee_primary_9977962
source IEEE Xplore All Conference Series
subjects Collaboration
Energy
Fairness
Federated learning
Measurement
Monte Carlo methods
NOMA
Non-Orthogonal Multiple Access (NOMA)
Simulation
Wireless communication
title Federated Learning in NOMA Networks: Convergence, Energy and Fairness-Based Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Federated%20Learning%20in%20NOMA%20Networks:%20Convergence,%20Energy%20and%20Fairness-Based%20Design&rft.btitle=2022%20IEEE%2033rd%20Annual%20International%20Symposium%20on%20Personal,%20Indoor%20and%20Mobile%20Radio%20Communications%20(PIMRC)&rft.au=Mrad,%20Ilyes&rft.date=2022-09-12&rft.spage=975&rft.epage=981&rft.pages=975-981&rft.eissn=2166-9589&rft_id=info:doi/10.1109/PIMRC54779.2022.9977962&rft.eisbn=166548053X&rft.eisbn_list=9781665480536&rft_dat=%3Cieee_CHZPO%3E9977962%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-fe1e768a40e72da7394d9d3502a335c7fd7c180a0bc375538b9ed9c17045fa623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9977962&rfr_iscdi=true