Loading…

A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics

Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expe...

Full description

Saved in:
Bibliographic Details
Main Authors: Amano, Jenny Rose, Punongbayan, Nhica, Caacbay, Joshua, Agustin, Eugene, Dela Vega, Kim Alfonce, Soriano, Aldrin, Andaya, Florante, Mandayo, Ericson, Beano, Mary Grace
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Amano, Jenny Rose
Punongbayan, Nhica
Caacbay, Joshua
Agustin, Eugene
Dela Vega, Kim Alfonce
Soriano, Aldrin
Andaya, Florante
Mandayo, Ericson
Beano, Mary Grace
description Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification.
doi_str_mv 10.1109/TENCON55691.2022.9978159
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9978159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9978159</ieee_id><sourcerecordid>9978159</sourcerecordid><originalsourceid>FETCH-LOGICAL-i485-7cece26f23469038f1719be9d5d9f01294166da65caaca4fc95927f78d7f56033</originalsourceid><addsrcrecordid>eNotkMFOwzAQRA0SEqX0C7jsD6TYTmzHxxAKVCrtgd4r49iNIbWLHZD69xjRvaxmtBrNW4SA4DkhWN5vF-t2s2aMSzKnmNK5lKImTF6gG8I5qxiWTF6iCc1eUWZ5jWYpfeA8HFNciwmKDbThcFRRje7HQOPVcEouQbDwqnTvvIGVUdE7v4dm2Ifoxv6QwIYID-ET2j6c_g4sPLpkVDKw7IwfnXU6BwYPzsPbQcURmq9vdQze6XSLrqwakpmd9xRtnxbb9qVYbZ6XbbMqXFWzQmijDeWWlhWXuKwtEUS-G9mxTlpMqKwyYqc400ppVVmdUamwou6EZRyX5RTd_cc6Y8zuGF2ucdqdP1T-Ap3cXGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</title><source>IEEE Xplore All Conference Series</source><creator>Amano, Jenny Rose ; Punongbayan, Nhica ; Caacbay, Joshua ; Agustin, Eugene ; Dela Vega, Kim Alfonce ; Soriano, Aldrin ; Andaya, Florante ; Mandayo, Ericson ; Beano, Mary Grace</creator><creatorcontrib>Amano, Jenny Rose ; Punongbayan, Nhica ; Caacbay, Joshua ; Agustin, Eugene ; Dela Vega, Kim Alfonce ; Soriano, Aldrin ; Andaya, Florante ; Mandayo, Ericson ; Beano, Mary Grace</creatorcontrib><description>Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification.</description><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1665450959</identifier><identifier>EISBN: 9781665450959</identifier><identifier>DOI: 10.1109/TENCON55691.2022.9978159</identifier><language>eng</language><publisher>IEEE</publisher><subject>Disease Identification ; k-nearest neighbors ; machine learning ; Machine learning algorithms ; Machine vision ; Plants (biology) ; Radio frequency ; random forest ; Random forests ; smart aquaponics ; support vector machine ; Support vector machine classification ; Technological innovation</subject><ispartof>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 2022, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9978159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9978159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amano, Jenny Rose</creatorcontrib><creatorcontrib>Punongbayan, Nhica</creatorcontrib><creatorcontrib>Caacbay, Joshua</creatorcontrib><creatorcontrib>Agustin, Eugene</creatorcontrib><creatorcontrib>Dela Vega, Kim Alfonce</creatorcontrib><creatorcontrib>Soriano, Aldrin</creatorcontrib><creatorcontrib>Andaya, Florante</creatorcontrib><creatorcontrib>Mandayo, Ericson</creatorcontrib><creatorcontrib>Beano, Mary Grace</creatorcontrib><title>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</title><title>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)</title><addtitle>TENCON</addtitle><description>Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification.</description><subject>Disease Identification</subject><subject>k-nearest neighbors</subject><subject>machine learning</subject><subject>Machine learning algorithms</subject><subject>Machine vision</subject><subject>Plants (biology)</subject><subject>Radio frequency</subject><subject>random forest</subject><subject>Random forests</subject><subject>smart aquaponics</subject><subject>support vector machine</subject><subject>Support vector machine classification</subject><subject>Technological innovation</subject><issn>2159-3450</issn><isbn>1665450959</isbn><isbn>9781665450959</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOwzAQRA0SEqX0C7jsD6TYTmzHxxAKVCrtgd4r49iNIbWLHZD69xjRvaxmtBrNW4SA4DkhWN5vF-t2s2aMSzKnmNK5lKImTF6gG8I5qxiWTF6iCc1eUWZ5jWYpfeA8HFNciwmKDbThcFRRje7HQOPVcEouQbDwqnTvvIGVUdE7v4dm2Ifoxv6QwIYID-ET2j6c_g4sPLpkVDKw7IwfnXU6BwYPzsPbQcURmq9vdQze6XSLrqwakpmd9xRtnxbb9qVYbZ6XbbMqXFWzQmijDeWWlhWXuKwtEUS-G9mxTlpMqKwyYqc400ppVVmdUamwou6EZRyX5RTd_cc6Y8zuGF2ucdqdP1T-Ap3cXGA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Amano, Jenny Rose</creator><creator>Punongbayan, Nhica</creator><creator>Caacbay, Joshua</creator><creator>Agustin, Eugene</creator><creator>Dela Vega, Kim Alfonce</creator><creator>Soriano, Aldrin</creator><creator>Andaya, Florante</creator><creator>Mandayo, Ericson</creator><creator>Beano, Mary Grace</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221101</creationdate><title>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</title><author>Amano, Jenny Rose ; Punongbayan, Nhica ; Caacbay, Joshua ; Agustin, Eugene ; Dela Vega, Kim Alfonce ; Soriano, Aldrin ; Andaya, Florante ; Mandayo, Ericson ; Beano, Mary Grace</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i485-7cece26f23469038f1719be9d5d9f01294166da65caaca4fc95927f78d7f56033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Disease Identification</topic><topic>k-nearest neighbors</topic><topic>machine learning</topic><topic>Machine learning algorithms</topic><topic>Machine vision</topic><topic>Plants (biology)</topic><topic>Radio frequency</topic><topic>random forest</topic><topic>Random forests</topic><topic>smart aquaponics</topic><topic>support vector machine</topic><topic>Support vector machine classification</topic><topic>Technological innovation</topic><toplevel>online_resources</toplevel><creatorcontrib>Amano, Jenny Rose</creatorcontrib><creatorcontrib>Punongbayan, Nhica</creatorcontrib><creatorcontrib>Caacbay, Joshua</creatorcontrib><creatorcontrib>Agustin, Eugene</creatorcontrib><creatorcontrib>Dela Vega, Kim Alfonce</creatorcontrib><creatorcontrib>Soriano, Aldrin</creatorcontrib><creatorcontrib>Andaya, Florante</creatorcontrib><creatorcontrib>Mandayo, Ericson</creatorcontrib><creatorcontrib>Beano, Mary Grace</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amano, Jenny Rose</au><au>Punongbayan, Nhica</au><au>Caacbay, Joshua</au><au>Agustin, Eugene</au><au>Dela Vega, Kim Alfonce</au><au>Soriano, Aldrin</au><au>Andaya, Florante</au><au>Mandayo, Ericson</au><au>Beano, Mary Grace</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</atitle><btitle>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)</btitle><stitle>TENCON</stitle><date>2022-11-01</date><risdate>2022</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2159-3450</eissn><eisbn>1665450959</eisbn><eisbn>9781665450959</eisbn><abstract>Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification.</abstract><pub>IEEE</pub><doi>10.1109/TENCON55691.2022.9978159</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2159-3450
ispartof TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 2022, p.1-6
issn 2159-3450
language eng
recordid cdi_ieee_primary_9978159
source IEEE Xplore All Conference Series
subjects Disease Identification
k-nearest neighbors
machine learning
Machine learning algorithms
Machine vision
Plants (biology)
Radio frequency
random forest
Random forests
smart aquaponics
support vector machine
Support vector machine classification
Technological innovation
title A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Comparative%20Analysis%20of%20Machine%20Learning%20Algorithms%20for%20Bok%20Choy%20Leaf%20Disease%20Identification%20in%20Smart%20Aquaponics&rft.btitle=TENCON%202022%20-%202022%20IEEE%20Region%2010%20Conference%20(TENCON)&rft.au=Amano,%20Jenny%20Rose&rft.date=2022-11-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2159-3450&rft_id=info:doi/10.1109/TENCON55691.2022.9978159&rft.eisbn=1665450959&rft.eisbn_list=9781665450959&rft_dat=%3Cieee_CHZPO%3E9978159%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i485-7cece26f23469038f1719be9d5d9f01294166da65caaca4fc95927f78d7f56033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9978159&rfr_iscdi=true