Loading…
A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics
Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expe...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Amano, Jenny Rose Punongbayan, Nhica Caacbay, Joshua Agustin, Eugene Dela Vega, Kim Alfonce Soriano, Aldrin Andaya, Florante Mandayo, Ericson Beano, Mary Grace |
description | Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification. |
doi_str_mv | 10.1109/TENCON55691.2022.9978159 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9978159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9978159</ieee_id><sourcerecordid>9978159</sourcerecordid><originalsourceid>FETCH-LOGICAL-i485-7cece26f23469038f1719be9d5d9f01294166da65caaca4fc95927f78d7f56033</originalsourceid><addsrcrecordid>eNotkMFOwzAQRA0SEqX0C7jsD6TYTmzHxxAKVCrtgd4r49iNIbWLHZD69xjRvaxmtBrNW4SA4DkhWN5vF-t2s2aMSzKnmNK5lKImTF6gG8I5qxiWTF6iCc1eUWZ5jWYpfeA8HFNciwmKDbThcFRRje7HQOPVcEouQbDwqnTvvIGVUdE7v4dm2Ifoxv6QwIYID-ET2j6c_g4sPLpkVDKw7IwfnXU6BwYPzsPbQcURmq9vdQze6XSLrqwakpmd9xRtnxbb9qVYbZ6XbbMqXFWzQmijDeWWlhWXuKwtEUS-G9mxTlpMqKwyYqc400ppVVmdUamwou6EZRyX5RTd_cc6Y8zuGF2ucdqdP1T-Ap3cXGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</title><source>IEEE Xplore All Conference Series</source><creator>Amano, Jenny Rose ; Punongbayan, Nhica ; Caacbay, Joshua ; Agustin, Eugene ; Dela Vega, Kim Alfonce ; Soriano, Aldrin ; Andaya, Florante ; Mandayo, Ericson ; Beano, Mary Grace</creator><creatorcontrib>Amano, Jenny Rose ; Punongbayan, Nhica ; Caacbay, Joshua ; Agustin, Eugene ; Dela Vega, Kim Alfonce ; Soriano, Aldrin ; Andaya, Florante ; Mandayo, Ericson ; Beano, Mary Grace</creatorcontrib><description>Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification.</description><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1665450959</identifier><identifier>EISBN: 9781665450959</identifier><identifier>DOI: 10.1109/TENCON55691.2022.9978159</identifier><language>eng</language><publisher>IEEE</publisher><subject>Disease Identification ; k-nearest neighbors ; machine learning ; Machine learning algorithms ; Machine vision ; Plants (biology) ; Radio frequency ; random forest ; Random forests ; smart aquaponics ; support vector machine ; Support vector machine classification ; Technological innovation</subject><ispartof>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 2022, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9978159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9978159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amano, Jenny Rose</creatorcontrib><creatorcontrib>Punongbayan, Nhica</creatorcontrib><creatorcontrib>Caacbay, Joshua</creatorcontrib><creatorcontrib>Agustin, Eugene</creatorcontrib><creatorcontrib>Dela Vega, Kim Alfonce</creatorcontrib><creatorcontrib>Soriano, Aldrin</creatorcontrib><creatorcontrib>Andaya, Florante</creatorcontrib><creatorcontrib>Mandayo, Ericson</creatorcontrib><creatorcontrib>Beano, Mary Grace</creatorcontrib><title>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</title><title>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)</title><addtitle>TENCON</addtitle><description>Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification.</description><subject>Disease Identification</subject><subject>k-nearest neighbors</subject><subject>machine learning</subject><subject>Machine learning algorithms</subject><subject>Machine vision</subject><subject>Plants (biology)</subject><subject>Radio frequency</subject><subject>random forest</subject><subject>Random forests</subject><subject>smart aquaponics</subject><subject>support vector machine</subject><subject>Support vector machine classification</subject><subject>Technological innovation</subject><issn>2159-3450</issn><isbn>1665450959</isbn><isbn>9781665450959</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOwzAQRA0SEqX0C7jsD6TYTmzHxxAKVCrtgd4r49iNIbWLHZD69xjRvaxmtBrNW4SA4DkhWN5vF-t2s2aMSzKnmNK5lKImTF6gG8I5qxiWTF6iCc1eUWZ5jWYpfeA8HFNciwmKDbThcFRRje7HQOPVcEouQbDwqnTvvIGVUdE7v4dm2Ifoxv6QwIYID-ET2j6c_g4sPLpkVDKw7IwfnXU6BwYPzsPbQcURmq9vdQze6XSLrqwakpmd9xRtnxbb9qVYbZ6XbbMqXFWzQmijDeWWlhWXuKwtEUS-G9mxTlpMqKwyYqc400ppVVmdUamwou6EZRyX5RTd_cc6Y8zuGF2ucdqdP1T-Ap3cXGA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Amano, Jenny Rose</creator><creator>Punongbayan, Nhica</creator><creator>Caacbay, Joshua</creator><creator>Agustin, Eugene</creator><creator>Dela Vega, Kim Alfonce</creator><creator>Soriano, Aldrin</creator><creator>Andaya, Florante</creator><creator>Mandayo, Ericson</creator><creator>Beano, Mary Grace</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221101</creationdate><title>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</title><author>Amano, Jenny Rose ; Punongbayan, Nhica ; Caacbay, Joshua ; Agustin, Eugene ; Dela Vega, Kim Alfonce ; Soriano, Aldrin ; Andaya, Florante ; Mandayo, Ericson ; Beano, Mary Grace</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i485-7cece26f23469038f1719be9d5d9f01294166da65caaca4fc95927f78d7f56033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Disease Identification</topic><topic>k-nearest neighbors</topic><topic>machine learning</topic><topic>Machine learning algorithms</topic><topic>Machine vision</topic><topic>Plants (biology)</topic><topic>Radio frequency</topic><topic>random forest</topic><topic>Random forests</topic><topic>smart aquaponics</topic><topic>support vector machine</topic><topic>Support vector machine classification</topic><topic>Technological innovation</topic><toplevel>online_resources</toplevel><creatorcontrib>Amano, Jenny Rose</creatorcontrib><creatorcontrib>Punongbayan, Nhica</creatorcontrib><creatorcontrib>Caacbay, Joshua</creatorcontrib><creatorcontrib>Agustin, Eugene</creatorcontrib><creatorcontrib>Dela Vega, Kim Alfonce</creatorcontrib><creatorcontrib>Soriano, Aldrin</creatorcontrib><creatorcontrib>Andaya, Florante</creatorcontrib><creatorcontrib>Mandayo, Ericson</creatorcontrib><creatorcontrib>Beano, Mary Grace</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amano, Jenny Rose</au><au>Punongbayan, Nhica</au><au>Caacbay, Joshua</au><au>Agustin, Eugene</au><au>Dela Vega, Kim Alfonce</au><au>Soriano, Aldrin</au><au>Andaya, Florante</au><au>Mandayo, Ericson</au><au>Beano, Mary Grace</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics</atitle><btitle>TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)</btitle><stitle>TENCON</stitle><date>2022-11-01</date><risdate>2022</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2159-3450</eissn><eisbn>1665450959</eisbn><eisbn>9781665450959</eisbn><abstract>Urban gardening innovation is driven by food scarcity. Smart aquaponics is one of the strategies utilized in urban farming. However, when plants and crops are infected, agricultural output is impacted. Farmers study plants visually for disease detection and identification. It is time-consuming, expensive, and inaccurate. A smart aquaponics system must be monitored, regulated, and automated to succeed. Using vision systems and machine learning algorithms to enhance farming is efficient. To do this, a comparison of three machine learning estimators was conducted: the Support Vector Machine (SVM), the Random Forest (RF), and the K-Nearest Neighbor (KNN). Each algorithm was modeled on Bok Choy leaves from a smart aquaponics system. Each model has been optimized to maximize hold-out validations. The results indicated that KNN with tuned hyperparameters was the most successful model for the dataset, with a mean accuracy of 98.21% for hold-out validation and 98.25% for classification.</abstract><pub>IEEE</pub><doi>10.1109/TENCON55691.2022.9978159</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2159-3450 |
ispartof | TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 2022, p.1-6 |
issn | 2159-3450 |
language | eng |
recordid | cdi_ieee_primary_9978159 |
source | IEEE Xplore All Conference Series |
subjects | Disease Identification k-nearest neighbors machine learning Machine learning algorithms Machine vision Plants (biology) Radio frequency random forest Random forests smart aquaponics support vector machine Support vector machine classification Technological innovation |
title | A Comparative Analysis of Machine Learning Algorithms for Bok Choy Leaf Disease Identification in Smart Aquaponics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Comparative%20Analysis%20of%20Machine%20Learning%20Algorithms%20for%20Bok%20Choy%20Leaf%20Disease%20Identification%20in%20Smart%20Aquaponics&rft.btitle=TENCON%202022%20-%202022%20IEEE%20Region%2010%20Conference%20(TENCON)&rft.au=Amano,%20Jenny%20Rose&rft.date=2022-11-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2159-3450&rft_id=info:doi/10.1109/TENCON55691.2022.9978159&rft.eisbn=1665450959&rft.eisbn_list=9781665450959&rft_dat=%3Cieee_CHZPO%3E9978159%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i485-7cece26f23469038f1719be9d5d9f01294166da65caaca4fc95927f78d7f56033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9978159&rfr_iscdi=true |