Loading…
FIG-OP: Exploring Large-Scale Unknown Environments on a Fixed Time Budget
We present a method for autonomous exploration of large-scale unknown environments under mission time con-straints. We start by proposing the Frontloaded Information Gain Orienteering Problem (FIG-OP) - a generalization of the traditional orienteering problem where the assumption of a reliable envir...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a method for autonomous exploration of large-scale unknown environments under mission time con-straints. We start by proposing the Frontloaded Information Gain Orienteering Problem (FIG-OP) - a generalization of the traditional orienteering problem where the assumption of a reliable environmental model no longer holds. The FIG-OP ad-dresses model uncertainty by frontloading expected information gain through the addition of a greedy incentive, effectively expe-diting the moment in which new area is uncovered. In order to reason across multi-kilometer environments, we solve FIG-OP over an information-efficient world representation, constructed through the aggregation of information from a topological and metric map. Our method was extensively tested and field-hardened across various complex environments, ranging from subway systems to mines. In comparative simulations, we observe that the FIG-OP solution exhibits improved coverage efficiency over solutions generated by greedy and traditional orienteering-based approaches (i.e. severe and minimal model uncertainty assumptions, respectively). |
---|---|
ISSN: | 2153-0866 |
DOI: | 10.1109/IROS47612.2022.9981271 |