Loading…

Navigating underground environments using simple topological representations

Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is...

Full description

Saved in:
Bibliographic Details
Main Authors: Cano, Lorenzo, Mosteo, Alejandro R., Tardioli, Danilo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1724
container_issue
container_start_page 1717
container_title
container_volume
creator Cano, Lorenzo
Mosteo, Alejandro R.
Tardioli, Danilo
description Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection.
doi_str_mv 10.1109/IROS47612.2022.9981336
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9981336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9981336</ieee_id><sourcerecordid>9981336</sourcerecordid><originalsourceid>FETCH-LOGICAL-i181t-5772b2d3ba0d1cb254618d525212713e5d7a4529fbcbe3f39d8a95fb0ed943fa3</originalsourceid><addsrcrecordid>eNotj9tKxDAURaMgOI7zBYL0B1pzTpqkeZTBy0BxwMvzkDanJdIbSWfAv7fiPK2HtVmwGbsHngFw87B733_kWgFmyBEzYwoQQl2wG1BK5tqgxku2QpAi5YVS12wT4zfnHLg2hVErVr7Zk2_t7Ic2OQ6OQhvGhQkNJx_Goadhjskx_uno-6mjZB6nsRtbX9suCTQFistmCYxDvGVXje0ibc5cs6_np8_ta1ruX3bbxzL1UMCcSq2xQicqyx3UFcpcQeEkSgTUIEg6bXOJpqnqikQjjCuskU3FyZlcNFas2d1_1xPRYQq-t-HncD4vfgGAIlEi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Navigating underground environments using simple topological representations</title><source>IEEE Xplore All Conference Series</source><creator>Cano, Lorenzo ; Mosteo, Alejandro R. ; Tardioli, Danilo</creator><creatorcontrib>Cano, Lorenzo ; Mosteo, Alejandro R. ; Tardioli, Danilo</creatorcontrib><description>Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1665479272</identifier><identifier>EISBN: 9781665479271</identifier><identifier>DOI: 10.1109/IROS47612.2022.9981336</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional neural networks ; Location awareness ; Navigation ; Reliability ; Soil ; Training ; Trajectory</subject><ispartof>2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, p.1717-1724</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9981336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9981336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cano, Lorenzo</creatorcontrib><creatorcontrib>Mosteo, Alejandro R.</creatorcontrib><creatorcontrib>Tardioli, Danilo</creatorcontrib><title>Navigating underground environments using simple topological representations</title><title>2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection.</description><subject>Convolutional neural networks</subject><subject>Location awareness</subject><subject>Navigation</subject><subject>Reliability</subject><subject>Soil</subject><subject>Training</subject><subject>Trajectory</subject><issn>2153-0866</issn><isbn>1665479272</isbn><isbn>9781665479271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9tKxDAURaMgOI7zBYL0B1pzTpqkeZTBy0BxwMvzkDanJdIbSWfAv7fiPK2HtVmwGbsHngFw87B733_kWgFmyBEzYwoQQl2wG1BK5tqgxku2QpAi5YVS12wT4zfnHLg2hVErVr7Zk2_t7Ic2OQ6OQhvGhQkNJx_Goadhjskx_uno-6mjZB6nsRtbX9suCTQFistmCYxDvGVXje0ibc5cs6_np8_ta1ruX3bbxzL1UMCcSq2xQicqyx3UFcpcQeEkSgTUIEg6bXOJpqnqikQjjCuskU3FyZlcNFas2d1_1xPRYQq-t-HncD4vfgGAIlEi</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cano, Lorenzo</creator><creator>Mosteo, Alejandro R.</creator><creator>Tardioli, Danilo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220101</creationdate><title>Navigating underground environments using simple topological representations</title><author>Cano, Lorenzo ; Mosteo, Alejandro R. ; Tardioli, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i181t-5772b2d3ba0d1cb254618d525212713e5d7a4529fbcbe3f39d8a95fb0ed943fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional neural networks</topic><topic>Location awareness</topic><topic>Navigation</topic><topic>Reliability</topic><topic>Soil</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Cano, Lorenzo</creatorcontrib><creatorcontrib>Mosteo, Alejandro R.</creatorcontrib><creatorcontrib>Tardioli, Danilo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cano, Lorenzo</au><au>Mosteo, Alejandro R.</au><au>Tardioli, Danilo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Navigating underground environments using simple topological representations</atitle><btitle>2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2022-01-01</date><risdate>2022</risdate><spage>1717</spage><epage>1724</epage><pages>1717-1724</pages><eissn>2153-0866</eissn><eisbn>1665479272</eisbn><eisbn>9781665479271</eisbn><abstract>Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection.</abstract><pub>IEEE</pub><doi>10.1109/IROS47612.2022.9981336</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-0866
ispartof 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, p.1717-1724
issn 2153-0866
language eng
recordid cdi_ieee_primary_9981336
source IEEE Xplore All Conference Series
subjects Convolutional neural networks
Location awareness
Navigation
Reliability
Soil
Training
Trajectory
title Navigating underground environments using simple topological representations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Navigating%20underground%20environments%20using%20simple%20topological%20representations&rft.btitle=2022%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Cano,%20Lorenzo&rft.date=2022-01-01&rft.spage=1717&rft.epage=1724&rft.pages=1717-1724&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS47612.2022.9981336&rft.eisbn=1665479272&rft.eisbn_list=9781665479271&rft_dat=%3Cieee_CHZPO%3E9981336%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i181t-5772b2d3ba0d1cb254618d525212713e5d7a4529fbcbe3f39d8a95fb0ed943fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9981336&rfr_iscdi=true