Loading…
Navigating underground environments using simple topological representations
Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1724 |
container_issue | |
container_start_page | 1717 |
container_title | |
container_volume | |
creator | Cano, Lorenzo Mosteo, Alejandro R. Tardioli, Danilo |
description | Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection. |
doi_str_mv | 10.1109/IROS47612.2022.9981336 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9981336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9981336</ieee_id><sourcerecordid>9981336</sourcerecordid><originalsourceid>FETCH-LOGICAL-i181t-5772b2d3ba0d1cb254618d525212713e5d7a4529fbcbe3f39d8a95fb0ed943fa3</originalsourceid><addsrcrecordid>eNotj9tKxDAURaMgOI7zBYL0B1pzTpqkeZTBy0BxwMvzkDanJdIbSWfAv7fiPK2HtVmwGbsHngFw87B733_kWgFmyBEzYwoQQl2wG1BK5tqgxku2QpAi5YVS12wT4zfnHLg2hVErVr7Zk2_t7Ic2OQ6OQhvGhQkNJx_Goadhjskx_uno-6mjZB6nsRtbX9suCTQFistmCYxDvGVXje0ibc5cs6_np8_ta1ruX3bbxzL1UMCcSq2xQicqyx3UFcpcQeEkSgTUIEg6bXOJpqnqikQjjCuskU3FyZlcNFas2d1_1xPRYQq-t-HncD4vfgGAIlEi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Navigating underground environments using simple topological representations</title><source>IEEE Xplore All Conference Series</source><creator>Cano, Lorenzo ; Mosteo, Alejandro R. ; Tardioli, Danilo</creator><creatorcontrib>Cano, Lorenzo ; Mosteo, Alejandro R. ; Tardioli, Danilo</creatorcontrib><description>Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1665479272</identifier><identifier>EISBN: 9781665479271</identifier><identifier>DOI: 10.1109/IROS47612.2022.9981336</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional neural networks ; Location awareness ; Navigation ; Reliability ; Soil ; Training ; Trajectory</subject><ispartof>2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, p.1717-1724</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9981336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9981336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cano, Lorenzo</creatorcontrib><creatorcontrib>Mosteo, Alejandro R.</creatorcontrib><creatorcontrib>Tardioli, Danilo</creatorcontrib><title>Navigating underground environments using simple topological representations</title><title>2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection.</description><subject>Convolutional neural networks</subject><subject>Location awareness</subject><subject>Navigation</subject><subject>Reliability</subject><subject>Soil</subject><subject>Training</subject><subject>Trajectory</subject><issn>2153-0866</issn><isbn>1665479272</isbn><isbn>9781665479271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9tKxDAURaMgOI7zBYL0B1pzTpqkeZTBy0BxwMvzkDanJdIbSWfAv7fiPK2HtVmwGbsHngFw87B733_kWgFmyBEzYwoQQl2wG1BK5tqgxku2QpAi5YVS12wT4zfnHLg2hVErVr7Zk2_t7Ic2OQ6OQhvGhQkNJx_Goadhjskx_uno-6mjZB6nsRtbX9suCTQFistmCYxDvGVXje0ibc5cs6_np8_ta1ruX3bbxzL1UMCcSq2xQicqyx3UFcpcQeEkSgTUIEg6bXOJpqnqikQjjCuskU3FyZlcNFas2d1_1xPRYQq-t-HncD4vfgGAIlEi</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cano, Lorenzo</creator><creator>Mosteo, Alejandro R.</creator><creator>Tardioli, Danilo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220101</creationdate><title>Navigating underground environments using simple topological representations</title><author>Cano, Lorenzo ; Mosteo, Alejandro R. ; Tardioli, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i181t-5772b2d3ba0d1cb254618d525212713e5d7a4529fbcbe3f39d8a95fb0ed943fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional neural networks</topic><topic>Location awareness</topic><topic>Navigation</topic><topic>Reliability</topic><topic>Soil</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Cano, Lorenzo</creatorcontrib><creatorcontrib>Mosteo, Alejandro R.</creatorcontrib><creatorcontrib>Tardioli, Danilo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cano, Lorenzo</au><au>Mosteo, Alejandro R.</au><au>Tardioli, Danilo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Navigating underground environments using simple topological representations</atitle><btitle>2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2022-01-01</date><risdate>2022</risdate><spage>1717</spage><epage>1724</epage><pages>1717-1724</pages><eissn>2153-0866</eissn><eisbn>1665479272</eisbn><eisbn>9781665479271</eisbn><abstract>Underground environments are some of the most challenging for autonomous navigation. The long, featureless corridors, loose and slippery soils, bad illumination and unavailability of global localization make many traditional approaches struggle. In this work, a topological-based navigation system is presented that enables autonomous navigation of a ground robot in mine-like environments relying exclusively on a high-level topological representation of the tunnel network. The topological representation is used to generate high-level topological instructions used by the agent to navigate through corridors and intersections. A convolutional neural network (CNN) is used to detect all the galleries accessible to a robot from its current position. The use of a CNN proves to be a reliable approach to this problem, capable of detecting the galleries correctly in a wide variety of situations. The CNN is also able to detect galleries even in the presence of obstacles, which motivates the development of a reactive navigation system that can effectively exploit the predictions of the gallery detection.</abstract><pub>IEEE</pub><doi>10.1109/IROS47612.2022.9981336</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0866 |
ispartof | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, p.1717-1724 |
issn | 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_9981336 |
source | IEEE Xplore All Conference Series |
subjects | Convolutional neural networks Location awareness Navigation Reliability Soil Training Trajectory |
title | Navigating underground environments using simple topological representations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Navigating%20underground%20environments%20using%20simple%20topological%20representations&rft.btitle=2022%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Cano,%20Lorenzo&rft.date=2022-01-01&rft.spage=1717&rft.epage=1724&rft.pages=1717-1724&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS47612.2022.9981336&rft.eisbn=1665479272&rft.eisbn_list=9781665479271&rft_dat=%3Cieee_CHZPO%3E9981336%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i181t-5772b2d3ba0d1cb254618d525212713e5d7a4529fbcbe3f39d8a95fb0ed943fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9981336&rfr_iscdi=true |