Loading…

Spotting dynamic hand gestures in video image sequences using hidden Markov models

A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorith...

Full description

Saved in:
Bibliographic Details
Main Authors: Morguet, P., Lang, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 197 vol.3
container_issue
container_start_page 193
container_title
container_volume
creator Morguet, P.
Lang, M.
description A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays.
doi_str_mv 10.1109/ICIP.1998.999009
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_999009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>999009</ieee_id><sourcerecordid>999009</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-45b0486f6deb9d5459cf2dabcbfe196c255cdace6dbe9bddb5c2e5f9eff8335f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0hJKB0j1j5BxLsJE58lyjiEakIxGNd2b7XqaFNSpxU6t-3qMxmFqMzmmHsRopUSgF3Td28pRJApwAgBJyxK6GlLrXOpLxg8xi_xVE6qyqoLtn7x7Yfx9C1HPed2QTHV6ZD3lIcp4EiDx3fBaSeh41piUf6nahzx2CKf9AqIFLHX8zw0-_4pkdax2t27s060vzfZ-zr8eGzfk4Wr09Nfb9IghTFmBTKikKXvkSygKpQ4HyGxjrrSULpMqUcGkclWgKLaJXLSHkg73WeK5_P2O2pNxDRcjscFw775el1fgBgjFBy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spotting dynamic hand gestures in video image sequences using hidden Markov models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morguet, P. ; Lang, M.</creator><creatorcontrib>Morguet, P. ; Lang, M.</creatorcontrib><description>A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays.</description><identifier>ISBN: 0818688211</identifier><identifier>ISBN: 9780818688218</identifier><identifier>DOI: 10.1109/ICIP.1998.999009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delay ; Hidden Markov models ; Humans ; Image recognition ; Image segmentation ; Image sequences ; Shape ; Stochastic processes ; Streaming media ; Viterbi algorithm</subject><ispartof>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998, p.193-197 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/999009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/999009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morguet, P.</creatorcontrib><creatorcontrib>Lang, M.</creatorcontrib><title>Spotting dynamic hand gestures in video image sequences using hidden Markov models</title><title>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)</title><addtitle>ICIP</addtitle><description>A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays.</description><subject>Delay</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Shape</subject><subject>Stochastic processes</subject><subject>Streaming media</subject><subject>Viterbi algorithm</subject><isbn>0818688211</isbn><isbn>9780818688218</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAURC0hJKB0j1j5BxLsJE58lyjiEakIxGNd2b7XqaFNSpxU6t-3qMxmFqMzmmHsRopUSgF3Td28pRJApwAgBJyxK6GlLrXOpLxg8xi_xVE6qyqoLtn7x7Yfx9C1HPed2QTHV6ZD3lIcp4EiDx3fBaSeh41piUf6nahzx2CKf9AqIFLHX8zw0-_4pkdax2t27s060vzfZ-zr8eGzfk4Wr09Nfb9IghTFmBTKikKXvkSygKpQ4HyGxjrrSULpMqUcGkclWgKLaJXLSHkg73WeK5_P2O2pNxDRcjscFw775el1fgBgjFBy</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Morguet, P.</creator><creator>Lang, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Spotting dynamic hand gestures in video image sequences using hidden Markov models</title><author>Morguet, P. ; Lang, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-45b0486f6deb9d5459cf2dabcbfe196c255cdace6dbe9bddb5c2e5f9eff8335f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Delay</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Shape</topic><topic>Stochastic processes</topic><topic>Streaming media</topic><topic>Viterbi algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Morguet, P.</creatorcontrib><creatorcontrib>Lang, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morguet, P.</au><au>Lang, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spotting dynamic hand gestures in video image sequences using hidden Markov models</atitle><btitle>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)</btitle><stitle>ICIP</stitle><date>1998</date><risdate>1998</risdate><spage>193</spage><epage>197 vol.3</epage><pages>193-197 vol.3</pages><isbn>0818688211</isbn><isbn>9780818688218</isbn><abstract>A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.1998.999009</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818688211
ispartof Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998, p.193-197 vol.3
issn
language eng
recordid cdi_ieee_primary_999009
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Delay
Hidden Markov models
Humans
Image recognition
Image segmentation
Image sequences
Shape
Stochastic processes
Streaming media
Viterbi algorithm
title Spotting dynamic hand gestures in video image sequences using hidden Markov models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spotting%20dynamic%20hand%20gestures%20in%20video%20image%20sequences%20using%20hidden%20Markov%20models&rft.btitle=Proceedings%201998%20International%20Conference%20on%20Image%20Processing.%20ICIP98%20(Cat.%20No.98CB36269)&rft.au=Morguet,%20P.&rft.date=1998&rft.spage=193&rft.epage=197%20vol.3&rft.pages=193-197%20vol.3&rft.isbn=0818688211&rft.isbn_list=9780818688218&rft_id=info:doi/10.1109/ICIP.1998.999009&rft_dat=%3Cieee_6IE%3E999009%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-45b0486f6deb9d5459cf2dabcbfe196c255cdace6dbe9bddb5c2e5f9eff8335f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=999009&rfr_iscdi=true