Loading…
Spotting dynamic hand gestures in video image sequences using hidden Markov models
A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorith...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 197 vol.3 |
container_issue | |
container_start_page | 193 |
container_title | |
container_volume | |
creator | Morguet, P. Lang, M. |
description | A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays. |
doi_str_mv | 10.1109/ICIP.1998.999009 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_999009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>999009</ieee_id><sourcerecordid>999009</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-45b0486f6deb9d5459cf2dabcbfe196c255cdace6dbe9bddb5c2e5f9eff8335f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0hJKB0j1j5BxLsJE58lyjiEakIxGNd2b7XqaFNSpxU6t-3qMxmFqMzmmHsRopUSgF3Td28pRJApwAgBJyxK6GlLrXOpLxg8xi_xVE6qyqoLtn7x7Yfx9C1HPed2QTHV6ZD3lIcp4EiDx3fBaSeh41piUf6nahzx2CKf9AqIFLHX8zw0-_4pkdax2t27s060vzfZ-zr8eGzfk4Wr09Nfb9IghTFmBTKikKXvkSygKpQ4HyGxjrrSULpMqUcGkclWgKLaJXLSHkg73WeK5_P2O2pNxDRcjscFw775el1fgBgjFBy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spotting dynamic hand gestures in video image sequences using hidden Markov models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morguet, P. ; Lang, M.</creator><creatorcontrib>Morguet, P. ; Lang, M.</creatorcontrib><description>A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays.</description><identifier>ISBN: 0818688211</identifier><identifier>ISBN: 9780818688218</identifier><identifier>DOI: 10.1109/ICIP.1998.999009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delay ; Hidden Markov models ; Humans ; Image recognition ; Image segmentation ; Image sequences ; Shape ; Stochastic processes ; Streaming media ; Viterbi algorithm</subject><ispartof>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998, p.193-197 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/999009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/999009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morguet, P.</creatorcontrib><creatorcontrib>Lang, M.</creatorcontrib><title>Spotting dynamic hand gestures in video image sequences using hidden Markov models</title><title>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)</title><addtitle>ICIP</addtitle><description>A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays.</description><subject>Delay</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Shape</subject><subject>Stochastic processes</subject><subject>Streaming media</subject><subject>Viterbi algorithm</subject><isbn>0818688211</isbn><isbn>9780818688218</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAURC0hJKB0j1j5BxLsJE58lyjiEakIxGNd2b7XqaFNSpxU6t-3qMxmFqMzmmHsRopUSgF3Td28pRJApwAgBJyxK6GlLrXOpLxg8xi_xVE6qyqoLtn7x7Yfx9C1HPed2QTHV6ZD3lIcp4EiDx3fBaSeh41piUf6nahzx2CKf9AqIFLHX8zw0-_4pkdax2t27s060vzfZ-zr8eGzfk4Wr09Nfb9IghTFmBTKikKXvkSygKpQ4HyGxjrrSULpMqUcGkclWgKLaJXLSHkg73WeK5_P2O2pNxDRcjscFw775el1fgBgjFBy</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Morguet, P.</creator><creator>Lang, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Spotting dynamic hand gestures in video image sequences using hidden Markov models</title><author>Morguet, P. ; Lang, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-45b0486f6deb9d5459cf2dabcbfe196c255cdace6dbe9bddb5c2e5f9eff8335f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Delay</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Shape</topic><topic>Stochastic processes</topic><topic>Streaming media</topic><topic>Viterbi algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Morguet, P.</creatorcontrib><creatorcontrib>Lang, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morguet, P.</au><au>Lang, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spotting dynamic hand gestures in video image sequences using hidden Markov models</atitle><btitle>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)</btitle><stitle>ICIP</stitle><date>1998</date><risdate>1998</risdate><spage>193</spage><epage>197 vol.3</epage><pages>193-197 vol.3</pages><isbn>0818688211</isbn><isbn>9780818688218</isbn><abstract>A new and general stochastic approach to find and identify dynamic gestures in continuous video streams is presented. Hidden Markov models (HMMs) are used to solve this combined problem of temporal segmentation and classification in an integral way. Basically, an improved normalized Viterbi algorithm allows one to continuously observe the output scores of the HMMs at every time step. Characteristic peaks in the output scores of the respective models indicate the presence of gestures. Our experiments in the domain of hand gesture spotting provided excellent recognition results and very low temporal detection delays.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.1998.999009</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0818688211 |
ispartof | Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998, p.193-197 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_999009 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Delay Hidden Markov models Humans Image recognition Image segmentation Image sequences Shape Stochastic processes Streaming media Viterbi algorithm |
title | Spotting dynamic hand gestures in video image sequences using hidden Markov models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spotting%20dynamic%20hand%20gestures%20in%20video%20image%20sequences%20using%20hidden%20Markov%20models&rft.btitle=Proceedings%201998%20International%20Conference%20on%20Image%20Processing.%20ICIP98%20(Cat.%20No.98CB36269)&rft.au=Morguet,%20P.&rft.date=1998&rft.spage=193&rft.epage=197%20vol.3&rft.pages=193-197%20vol.3&rft.isbn=0818688211&rft.isbn_list=9780818688218&rft_id=info:doi/10.1109/ICIP.1998.999009&rft_dat=%3Cieee_6IE%3E999009%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-45b0486f6deb9d5459cf2dabcbfe196c255cdace6dbe9bddb5c2e5f9eff8335f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=999009&rfr_iscdi=true |