Loading…

Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data

The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of fai...

Full description

Saved in:
Bibliographic Details
Main Authors: Han, Ji-Hoon, Choi, Eui-Jin, Hong, Sun-Ki
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Han, Ji-Hoon
Choi, Eui-Jin
Hong, Sun-Ki
description The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state.
doi_str_mv 10.1109/SCEMS56272.2022.9990660
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9990660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9990660</ieee_id><sourcerecordid>9990660</sourcerecordid><originalsourceid>FETCH-LOGICAL-i487-4e45be435ab94ce5cf5e944f6604eeb8b5f5f55b59fa0b6aab5b7fe129b138933</originalsourceid><addsrcrecordid>eNotkE1uwjAQhd1KlYooJ-iivkCo7fgnXkYQSiVQF7BHYzSmrkyCEkPFAXrvpg2axTxp3vukN4S8cDblnNnXzaxab5QWRkwFE2JqrWVaszsysabgWitpdGGLezISxvDMKGMeyaTrvhhjuWCSmXxEfsoLhAguxJCutLpAPEMKTU0bTxehDglpFfGIdaJlDfHahY7OIQH1TTuIzfl0GhxD8DukT7puUn9f9Ohzi3Qe4FA3f9EyHpq2NxzptoUeXx_-IU_kwUPscHLbY7JdVNvZMlt9vL3PylUWZGEyiVI5lLkCZ-Ue1d4rtFL6vrREdIVTvh_llPXAnAZwyhmPXFjH88Lm-Zg8D9iAiLtTG47QXne3v-W_Sz9lgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</title><source>IEEE Xplore All Conference Series</source><creator>Han, Ji-Hoon ; Choi, Eui-Jin ; Hong, Sun-Ki</creator><creatorcontrib>Han, Ji-Hoon ; Choi, Eui-Jin ; Hong, Sun-Ki</creatorcontrib><description>The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state.</description><identifier>EISSN: 2771-7577</identifier><identifier>EISBN: 9781665476898</identifier><identifier>EISBN: 1665476893</identifier><identifier>DOI: 10.1109/SCEMS56272.2022.9990660</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning ; Failure analysis ; FEM ; Finite element analysis ; Motor fault diagnosis ; Neural networks ; Shape ; Systems engineering and theory ; Training data</subject><ispartof>2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS), 2022, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9990660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9990660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Ji-Hoon</creatorcontrib><creatorcontrib>Choi, Eui-Jin</creatorcontrib><creatorcontrib>Hong, Sun-Ki</creatorcontrib><title>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</title><title>2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS)</title><addtitle>SCEMS</addtitle><description>The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state.</description><subject>Deep learning</subject><subject>Failure analysis</subject><subject>FEM</subject><subject>Finite element analysis</subject><subject>Motor fault diagnosis</subject><subject>Neural networks</subject><subject>Shape</subject><subject>Systems engineering and theory</subject><subject>Training data</subject><issn>2771-7577</issn><isbn>9781665476898</isbn><isbn>1665476893</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1uwjAQhd1KlYooJ-iivkCo7fgnXkYQSiVQF7BHYzSmrkyCEkPFAXrvpg2axTxp3vukN4S8cDblnNnXzaxab5QWRkwFE2JqrWVaszsysabgWitpdGGLezISxvDMKGMeyaTrvhhjuWCSmXxEfsoLhAguxJCutLpAPEMKTU0bTxehDglpFfGIdaJlDfHahY7OIQH1TTuIzfl0GhxD8DukT7puUn9f9Ohzi3Qe4FA3f9EyHpq2NxzptoUeXx_-IU_kwUPscHLbY7JdVNvZMlt9vL3PylUWZGEyiVI5lLkCZ-Ue1d4rtFL6vrREdIVTvh_llPXAnAZwyhmPXFjH88Lm-Zg8D9iAiLtTG47QXne3v-W_Sz9lgQ</recordid><startdate>20221124</startdate><enddate>20221124</enddate><creator>Han, Ji-Hoon</creator><creator>Choi, Eui-Jin</creator><creator>Hong, Sun-Ki</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221124</creationdate><title>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</title><author>Han, Ji-Hoon ; Choi, Eui-Jin ; Hong, Sun-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i487-4e45be435ab94ce5cf5e944f6604eeb8b5f5f55b59fa0b6aab5b7fe129b138933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Failure analysis</topic><topic>FEM</topic><topic>Finite element analysis</topic><topic>Motor fault diagnosis</topic><topic>Neural networks</topic><topic>Shape</topic><topic>Systems engineering and theory</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Ji-Hoon</creatorcontrib><creatorcontrib>Choi, Eui-Jin</creatorcontrib><creatorcontrib>Hong, Sun-Ki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Ji-Hoon</au><au>Choi, Eui-Jin</au><au>Hong, Sun-Ki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</atitle><btitle>2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS)</btitle><stitle>SCEMS</stitle><date>2022-11-24</date><risdate>2022</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2771-7577</eissn><eisbn>9781665476898</eisbn><eisbn>1665476893</eisbn><abstract>The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state.</abstract><pub>IEEE</pub><doi>10.1109/SCEMS56272.2022.9990660</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-7577
ispartof 2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS), 2022, p.1-5
issn 2771-7577
language eng
recordid cdi_ieee_primary_9990660
source IEEE Xplore All Conference Series
subjects Deep learning
Failure analysis
FEM
Finite element analysis
Motor fault diagnosis
Neural networks
Shape
Systems engineering and theory
Training data
title Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Availability%20Evaluation%20of%20Finite%20Element%20Analysis%20Data%20for%20Data%20Supplementation%20with%20Motor%20Failure%20Diagnosis%20Algorithm%20Training%20Data&rft.btitle=2022%20IEEE%205th%20Student%20Conference%20on%20Electric%20Machines%20and%20Systems%20(SCEMS)&rft.au=Han,%20Ji-Hoon&rft.date=2022-11-24&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2771-7577&rft_id=info:doi/10.1109/SCEMS56272.2022.9990660&rft.eisbn=9781665476898&rft.eisbn_list=1665476893&rft_dat=%3Cieee_CHZPO%3E9990660%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i487-4e45be435ab94ce5cf5e944f6604eeb8b5f5f55b59fa0b6aab5b7fe129b138933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9990660&rfr_iscdi=true