Loading…
Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data
The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of fai...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Han, Ji-Hoon Choi, Eui-Jin Hong, Sun-Ki |
description | The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state. |
doi_str_mv | 10.1109/SCEMS56272.2022.9990660 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9990660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9990660</ieee_id><sourcerecordid>9990660</sourcerecordid><originalsourceid>FETCH-LOGICAL-i487-4e45be435ab94ce5cf5e944f6604eeb8b5f5f55b59fa0b6aab5b7fe129b138933</originalsourceid><addsrcrecordid>eNotkE1uwjAQhd1KlYooJ-iivkCo7fgnXkYQSiVQF7BHYzSmrkyCEkPFAXrvpg2axTxp3vukN4S8cDblnNnXzaxab5QWRkwFE2JqrWVaszsysabgWitpdGGLezISxvDMKGMeyaTrvhhjuWCSmXxEfsoLhAguxJCutLpAPEMKTU0bTxehDglpFfGIdaJlDfHahY7OIQH1TTuIzfl0GhxD8DukT7puUn9f9Ohzi3Qe4FA3f9EyHpq2NxzptoUeXx_-IU_kwUPscHLbY7JdVNvZMlt9vL3PylUWZGEyiVI5lLkCZ-Ue1d4rtFL6vrREdIVTvh_llPXAnAZwyhmPXFjH88Lm-Zg8D9iAiLtTG47QXne3v-W_Sz9lgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</title><source>IEEE Xplore All Conference Series</source><creator>Han, Ji-Hoon ; Choi, Eui-Jin ; Hong, Sun-Ki</creator><creatorcontrib>Han, Ji-Hoon ; Choi, Eui-Jin ; Hong, Sun-Ki</creatorcontrib><description>The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state.</description><identifier>EISSN: 2771-7577</identifier><identifier>EISBN: 9781665476898</identifier><identifier>EISBN: 1665476893</identifier><identifier>DOI: 10.1109/SCEMS56272.2022.9990660</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning ; Failure analysis ; FEM ; Finite element analysis ; Motor fault diagnosis ; Neural networks ; Shape ; Systems engineering and theory ; Training data</subject><ispartof>2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS), 2022, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9990660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9990660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Ji-Hoon</creatorcontrib><creatorcontrib>Choi, Eui-Jin</creatorcontrib><creatorcontrib>Hong, Sun-Ki</creatorcontrib><title>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</title><title>2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS)</title><addtitle>SCEMS</addtitle><description>The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state.</description><subject>Deep learning</subject><subject>Failure analysis</subject><subject>FEM</subject><subject>Finite element analysis</subject><subject>Motor fault diagnosis</subject><subject>Neural networks</subject><subject>Shape</subject><subject>Systems engineering and theory</subject><subject>Training data</subject><issn>2771-7577</issn><isbn>9781665476898</isbn><isbn>1665476893</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1uwjAQhd1KlYooJ-iivkCo7fgnXkYQSiVQF7BHYzSmrkyCEkPFAXrvpg2axTxp3vukN4S8cDblnNnXzaxab5QWRkwFE2JqrWVaszsysabgWitpdGGLezISxvDMKGMeyaTrvhhjuWCSmXxEfsoLhAguxJCutLpAPEMKTU0bTxehDglpFfGIdaJlDfHahY7OIQH1TTuIzfl0GhxD8DukT7puUn9f9Ohzi3Qe4FA3f9EyHpq2NxzptoUeXx_-IU_kwUPscHLbY7JdVNvZMlt9vL3PylUWZGEyiVI5lLkCZ-Ue1d4rtFL6vrREdIVTvh_llPXAnAZwyhmPXFjH88Lm-Zg8D9iAiLtTG47QXne3v-W_Sz9lgQ</recordid><startdate>20221124</startdate><enddate>20221124</enddate><creator>Han, Ji-Hoon</creator><creator>Choi, Eui-Jin</creator><creator>Hong, Sun-Ki</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221124</creationdate><title>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</title><author>Han, Ji-Hoon ; Choi, Eui-Jin ; Hong, Sun-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i487-4e45be435ab94ce5cf5e944f6604eeb8b5f5f55b59fa0b6aab5b7fe129b138933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Failure analysis</topic><topic>FEM</topic><topic>Finite element analysis</topic><topic>Motor fault diagnosis</topic><topic>Neural networks</topic><topic>Shape</topic><topic>Systems engineering and theory</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Ji-Hoon</creatorcontrib><creatorcontrib>Choi, Eui-Jin</creatorcontrib><creatorcontrib>Hong, Sun-Ki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Ji-Hoon</au><au>Choi, Eui-Jin</au><au>Hong, Sun-Ki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data</atitle><btitle>2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS)</btitle><stitle>SCEMS</stitle><date>2022-11-24</date><risdate>2022</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2771-7577</eissn><eisbn>9781665476898</eisbn><eisbn>1665476893</eisbn><abstract>The classic method of diagnosing motor failure is to analyze the signal characteristics of the motor. If a deep learning algorithm is used, the above process is omitted. This is replaced by a lot of data. However, the number of data that can be collected is limited. This is because the degree of failure and the condition of the motor are different in each situation. To solve this problem, research on data propagation using FEM (Finite Element Method) is in progress. FEM is used to check whether the propagated data is similar to classical theory and whether it can be used as training data for deep learning algorithms. Through these experiments, it was confirmed that the FEM data is data that helps in learning the deep learning algorithm that can classify the initial failure state.</abstract><pub>IEEE</pub><doi>10.1109/SCEMS56272.2022.9990660</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2771-7577 |
ispartof | 2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS), 2022, p.1-5 |
issn | 2771-7577 |
language | eng |
recordid | cdi_ieee_primary_9990660 |
source | IEEE Xplore All Conference Series |
subjects | Deep learning Failure analysis FEM Finite element analysis Motor fault diagnosis Neural networks Shape Systems engineering and theory Training data |
title | Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Availability%20Evaluation%20of%20Finite%20Element%20Analysis%20Data%20for%20Data%20Supplementation%20with%20Motor%20Failure%20Diagnosis%20Algorithm%20Training%20Data&rft.btitle=2022%20IEEE%205th%20Student%20Conference%20on%20Electric%20Machines%20and%20Systems%20(SCEMS)&rft.au=Han,%20Ji-Hoon&rft.date=2022-11-24&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2771-7577&rft_id=info:doi/10.1109/SCEMS56272.2022.9990660&rft.eisbn=9781665476898&rft.eisbn_list=1665476893&rft_dat=%3Cieee_CHZPO%3E9990660%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i487-4e45be435ab94ce5cf5e944f6604eeb8b5f5f55b59fa0b6aab5b7fe129b138933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9990660&rfr_iscdi=true |