Loading…
A Distributed control framework for the optimal operation of DC microgrids
In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed ag...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4590 |
container_issue | |
container_start_page | 4585 |
container_title | |
container_volume | |
creator | Fu, Zao Cucuzzella, Michele Cenedese, Carlo Yu, Wenwu Scherpen, Jacquelien M. A. |
description | In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework. |
doi_str_mv | 10.1109/CDC51059.2022.9992327 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9992327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992327</ieee_id><sourcerecordid>9992327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-4ba857c6e5d28cbdebeb0dccef15c97f9506c1e3b0ddace38dd7b33099731af03</originalsourceid><addsrcrecordid>eNotj81KAzEURqMgWGufQIS8wNT8TJK5yzKjVSm40XXJJDcanWlKJiK-vQN2deBbHL5DyC1na84Z3LVdqzhTsBZMiDUACCnMGVmBabjWqtZGc3FOFkIZXQlp2CW5mqZPxiRALRfkeUO7OJUc---Cnrp0KDkNNGQ74k_KXzSkTMsH0nQscbTDTMy2xHSgKdCupWN0Ob3n6KdrchHsMOHqxCV5e7h_bR-r3cv2qd3sqigUK1Xd20YZp1F50bjeY489885h4MqBCaCYdhzlPHrrUDbem15KBmAkt4HJJbn590ZE3B_zfCv_7k_p8g-Srk9r</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Distributed control framework for the optimal operation of DC microgrids</title><source>IEEE Xplore All Conference Series</source><creator>Fu, Zao ; Cucuzzella, Michele ; Cenedese, Carlo ; Yu, Wenwu ; Scherpen, Jacquelien M. A.</creator><creatorcontrib>Fu, Zao ; Cucuzzella, Michele ; Cenedese, Carlo ; Yu, Wenwu ; Scherpen, Jacquelien M. A.</creatorcontrib><description>In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework.</description><identifier>EISSN: 2576-2370</identifier><identifier>EISBN: 9781665467612</identifier><identifier>EISBN: 1665467614</identifier><identifier>DOI: 10.1109/CDC51059.2022.9992327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decentralized control ; Games ; Microgrids ; Optimal control ; Perturbation methods ; Power markets ; Simulation</subject><ispartof>2022 IEEE 61st Conference on Decision and Control (CDC), 2022, p.4585-4590</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9992327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Zao</creatorcontrib><creatorcontrib>Cucuzzella, Michele</creatorcontrib><creatorcontrib>Cenedese, Carlo</creatorcontrib><creatorcontrib>Yu, Wenwu</creatorcontrib><creatorcontrib>Scherpen, Jacquelien M. A.</creatorcontrib><title>A Distributed control framework for the optimal operation of DC microgrids</title><title>2022 IEEE 61st Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework.</description><subject>Decentralized control</subject><subject>Games</subject><subject>Microgrids</subject><subject>Optimal control</subject><subject>Perturbation methods</subject><subject>Power markets</subject><subject>Simulation</subject><issn>2576-2370</issn><isbn>9781665467612</isbn><isbn>1665467614</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURqMgWGufQIS8wNT8TJK5yzKjVSm40XXJJDcanWlKJiK-vQN2deBbHL5DyC1na84Z3LVdqzhTsBZMiDUACCnMGVmBabjWqtZGc3FOFkIZXQlp2CW5mqZPxiRALRfkeUO7OJUc---Cnrp0KDkNNGQ74k_KXzSkTMsH0nQscbTDTMy2xHSgKdCupWN0Ob3n6KdrchHsMOHqxCV5e7h_bR-r3cv2qd3sqigUK1Xd20YZp1F50bjeY489885h4MqBCaCYdhzlPHrrUDbem15KBmAkt4HJJbn590ZE3B_zfCv_7k_p8g-Srk9r</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Fu, Zao</creator><creator>Cucuzzella, Michele</creator><creator>Cenedese, Carlo</creator><creator>Yu, Wenwu</creator><creator>Scherpen, Jacquelien M. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220101</creationdate><title>A Distributed control framework for the optimal operation of DC microgrids</title><author>Fu, Zao ; Cucuzzella, Michele ; Cenedese, Carlo ; Yu, Wenwu ; Scherpen, Jacquelien M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-4ba857c6e5d28cbdebeb0dccef15c97f9506c1e3b0ddace38dd7b33099731af03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decentralized control</topic><topic>Games</topic><topic>Microgrids</topic><topic>Optimal control</topic><topic>Perturbation methods</topic><topic>Power markets</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zao</creatorcontrib><creatorcontrib>Cucuzzella, Michele</creatorcontrib><creatorcontrib>Cenedese, Carlo</creatorcontrib><creatorcontrib>Yu, Wenwu</creatorcontrib><creatorcontrib>Scherpen, Jacquelien M. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Zao</au><au>Cucuzzella, Michele</au><au>Cenedese, Carlo</au><au>Yu, Wenwu</au><au>Scherpen, Jacquelien M. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Distributed control framework for the optimal operation of DC microgrids</atitle><btitle>2022 IEEE 61st Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2022-01-01</date><risdate>2022</risdate><spage>4585</spage><epage>4590</epage><pages>4585-4590</pages><eissn>2576-2370</eissn><eisbn>9781665467612</eisbn><eisbn>1665467614</eisbn><abstract>In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework.</abstract><pub>IEEE</pub><doi>10.1109/CDC51059.2022.9992327</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-2370 |
ispartof | 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, p.4585-4590 |
issn | 2576-2370 |
language | eng |
recordid | cdi_ieee_primary_9992327 |
source | IEEE Xplore All Conference Series |
subjects | Decentralized control Games Microgrids Optimal control Perturbation methods Power markets Simulation |
title | A Distributed control framework for the optimal operation of DC microgrids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Distributed%20control%20framework%20for%20the%20optimal%20operation%20of%20DC%20microgrids&rft.btitle=2022%20IEEE%2061st%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Fu,%20Zao&rft.date=2022-01-01&rft.spage=4585&rft.epage=4590&rft.pages=4585-4590&rft.eissn=2576-2370&rft_id=info:doi/10.1109/CDC51059.2022.9992327&rft.eisbn=9781665467612&rft.eisbn_list=1665467614&rft_dat=%3Cieee_CHZPO%3E9992327%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i250t-4ba857c6e5d28cbdebeb0dccef15c97f9506c1e3b0ddace38dd7b33099731af03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9992327&rfr_iscdi=true |