Loading…

A Distributed control framework for the optimal operation of DC microgrids

In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed ag...

Full description

Saved in:
Bibliographic Details
Main Authors: Fu, Zao, Cucuzzella, Michele, Cenedese, Carlo, Yu, Wenwu, Scherpen, Jacquelien M. A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4590
container_issue
container_start_page 4585
container_title
container_volume
creator Fu, Zao
Cucuzzella, Michele
Cenedese, Carlo
Yu, Wenwu
Scherpen, Jacquelien M. A.
description In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework.
doi_str_mv 10.1109/CDC51059.2022.9992327
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9992327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992327</ieee_id><sourcerecordid>9992327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-4ba857c6e5d28cbdebeb0dccef15c97f9506c1e3b0ddace38dd7b33099731af03</originalsourceid><addsrcrecordid>eNotj81KAzEURqMgWGufQIS8wNT8TJK5yzKjVSm40XXJJDcanWlKJiK-vQN2deBbHL5DyC1na84Z3LVdqzhTsBZMiDUACCnMGVmBabjWqtZGc3FOFkIZXQlp2CW5mqZPxiRALRfkeUO7OJUc---Cnrp0KDkNNGQ74k_KXzSkTMsH0nQscbTDTMy2xHSgKdCupWN0Ob3n6KdrchHsMOHqxCV5e7h_bR-r3cv2qd3sqigUK1Xd20YZp1F50bjeY489885h4MqBCaCYdhzlPHrrUDbem15KBmAkt4HJJbn590ZE3B_zfCv_7k_p8g-Srk9r</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Distributed control framework for the optimal operation of DC microgrids</title><source>IEEE Xplore All Conference Series</source><creator>Fu, Zao ; Cucuzzella, Michele ; Cenedese, Carlo ; Yu, Wenwu ; Scherpen, Jacquelien M. A.</creator><creatorcontrib>Fu, Zao ; Cucuzzella, Michele ; Cenedese, Carlo ; Yu, Wenwu ; Scherpen, Jacquelien M. A.</creatorcontrib><description>In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework.</description><identifier>EISSN: 2576-2370</identifier><identifier>EISBN: 9781665467612</identifier><identifier>EISBN: 1665467614</identifier><identifier>DOI: 10.1109/CDC51059.2022.9992327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decentralized control ; Games ; Microgrids ; Optimal control ; Perturbation methods ; Power markets ; Simulation</subject><ispartof>2022 IEEE 61st Conference on Decision and Control (CDC), 2022, p.4585-4590</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9992327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Zao</creatorcontrib><creatorcontrib>Cucuzzella, Michele</creatorcontrib><creatorcontrib>Cenedese, Carlo</creatorcontrib><creatorcontrib>Yu, Wenwu</creatorcontrib><creatorcontrib>Scherpen, Jacquelien M. A.</creatorcontrib><title>A Distributed control framework for the optimal operation of DC microgrids</title><title>2022 IEEE 61st Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework.</description><subject>Decentralized control</subject><subject>Games</subject><subject>Microgrids</subject><subject>Optimal control</subject><subject>Perturbation methods</subject><subject>Power markets</subject><subject>Simulation</subject><issn>2576-2370</issn><isbn>9781665467612</isbn><isbn>1665467614</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURqMgWGufQIS8wNT8TJK5yzKjVSm40XXJJDcanWlKJiK-vQN2deBbHL5DyC1na84Z3LVdqzhTsBZMiDUACCnMGVmBabjWqtZGc3FOFkIZXQlp2CW5mqZPxiRALRfkeUO7OJUc---Cnrp0KDkNNGQ74k_KXzSkTMsH0nQscbTDTMy2xHSgKdCupWN0Ob3n6KdrchHsMOHqxCV5e7h_bR-r3cv2qd3sqigUK1Xd20YZp1F50bjeY489885h4MqBCaCYdhzlPHrrUDbem15KBmAkt4HJJbn590ZE3B_zfCv_7k_p8g-Srk9r</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Fu, Zao</creator><creator>Cucuzzella, Michele</creator><creator>Cenedese, Carlo</creator><creator>Yu, Wenwu</creator><creator>Scherpen, Jacquelien M. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220101</creationdate><title>A Distributed control framework for the optimal operation of DC microgrids</title><author>Fu, Zao ; Cucuzzella, Michele ; Cenedese, Carlo ; Yu, Wenwu ; Scherpen, Jacquelien M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-4ba857c6e5d28cbdebeb0dccef15c97f9506c1e3b0ddace38dd7b33099731af03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decentralized control</topic><topic>Games</topic><topic>Microgrids</topic><topic>Optimal control</topic><topic>Perturbation methods</topic><topic>Power markets</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zao</creatorcontrib><creatorcontrib>Cucuzzella, Michele</creatorcontrib><creatorcontrib>Cenedese, Carlo</creatorcontrib><creatorcontrib>Yu, Wenwu</creatorcontrib><creatorcontrib>Scherpen, Jacquelien M. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Zao</au><au>Cucuzzella, Michele</au><au>Cenedese, Carlo</au><au>Yu, Wenwu</au><au>Scherpen, Jacquelien M. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Distributed control framework for the optimal operation of DC microgrids</atitle><btitle>2022 IEEE 61st Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2022-01-01</date><risdate>2022</risdate><spage>4585</spage><epage>4590</epage><pages>4585-4590</pages><eissn>2576-2370</eissn><eisbn>9781665467612</eisbn><eisbn>1665467614</eisbn><abstract>In this paper we propose an original distributed control framework for DC microgrids. We first formulate the (optimal) control objectives as an aggregative game suitable for the energy trading market. Then, based on duality, we analyze the equivalent distributed optimal condition for the proposed aggregative game and design a distributed control scheme to solve it. By interconnecting the DC microgrid and the designed distributed control system in a power preserving way, we steer the DC microgrid's state to the desired optimal equilibrium, satisfying a predefined set of local and coupling constraints. Finally, based on singular perturbation system theory, we analyze the convergence of the closed-loop system. The simulation results show excellent performance of the proposed control framework.</abstract><pub>IEEE</pub><doi>10.1109/CDC51059.2022.9992327</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-2370
ispartof 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, p.4585-4590
issn 2576-2370
language eng
recordid cdi_ieee_primary_9992327
source IEEE Xplore All Conference Series
subjects Decentralized control
Games
Microgrids
Optimal control
Perturbation methods
Power markets
Simulation
title A Distributed control framework for the optimal operation of DC microgrids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Distributed%20control%20framework%20for%20the%20optimal%20operation%20of%20DC%20microgrids&rft.btitle=2022%20IEEE%2061st%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Fu,%20Zao&rft.date=2022-01-01&rft.spage=4585&rft.epage=4590&rft.pages=4585-4590&rft.eissn=2576-2370&rft_id=info:doi/10.1109/CDC51059.2022.9992327&rft.eisbn=9781665467612&rft.eisbn_list=1665467614&rft_dat=%3Cieee_CHZPO%3E9992327%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i250t-4ba857c6e5d28cbdebeb0dccef15c97f9506c1e3b0ddace38dd7b33099731af03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9992327&rfr_iscdi=true