Loading…

Compressed Cluster Sensing in Multiagent IoT Control

Traditional multiagent system control relies primarily on inter-agent local communications. In large-scale IoT systems it may appear hard to synthesize local control actions in a simple manner. Cluster control possibilities are thus thoroughly discussed, with possible control goals stated. The relat...

Full description

Saved in:
Bibliographic Details
Main Authors: Uzhva, Denis, Granichin, Oleg, Granichina, Olga
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3585
container_issue
container_start_page 3580
container_title
container_volume
creator Uzhva, Denis
Granichin, Oleg
Granichina, Olga
description Traditional multiagent system control relies primarily on inter-agent local communications. In large-scale IoT systems it may appear hard to synthesize local control actions in a simple manner. Cluster control possibilities are thus thoroughly discussed, with possible control goals stated. The relation between multiagent state sparsity and cluster patterns is illustrated, for further utilization of sparsity for cluster control. Consequently, the problem of cluster identification is stated, and a possible solution is proposed in the form of the compressed cluster sensing algorithm. The algorithm utilizes compressed sensing methodology for a compact representation of agent states, which is then used to synthesize compact control actions in a low-dimensional space, without requiring to specify cluster locations.
doi_str_mv 10.1109/CDC51059.2022.9992703
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9992703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992703</ieee_id><sourcerecordid>9992703</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-65e049bab5c94bc99af85c675311ef44b3459d036f8c228cb7963d064e5196593</originalsourceid><addsrcrecordid>eNotz7FOwzAQgGGDhEQpfQKE5BdIsH0-OzciA6VSEQNlrpzkUhmlSRWnA2_PQKd_-6RfiEetSq0VPYWXgFohlUYZUxKR8QquxIp8pZ1D67zT5losDHpXGPDqVtzl_KMUEFlYCBvG42ninLmVoT_nmSf5xUNOw0GmQX6c-znFAw-z3Iw7GcZhnsb-Xtx0sc-8unQpvt9ed-G92H6uN-F5WyQNMBcOWVmqY40N2bohil2FjfMIWnNnbQ0WqVXguqoxpmpqTw5a5SyjJocES_Hw7yZm3p-mdIzT7_4yCX9wWkTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Compressed Cluster Sensing in Multiagent IoT Control</title><source>IEEE Xplore All Conference Series</source><creator>Uzhva, Denis ; Granichin, Oleg ; Granichina, Olga</creator><creatorcontrib>Uzhva, Denis ; Granichin, Oleg ; Granichina, Olga</creatorcontrib><description>Traditional multiagent system control relies primarily on inter-agent local communications. In large-scale IoT systems it may appear hard to synthesize local control actions in a simple manner. Cluster control possibilities are thus thoroughly discussed, with possible control goals stated. The relation between multiagent state sparsity and cluster patterns is illustrated, for further utilization of sparsity for cluster control. Consequently, the problem of cluster identification is stated, and a possible solution is proposed in the form of the compressed cluster sensing algorithm. The algorithm utilizes compressed sensing methodology for a compact representation of agent states, which is then used to synthesize compact control actions in a low-dimensional space, without requiring to specify cluster locations.</description><identifier>EISSN: 2576-2370</identifier><identifier>EISBN: 9781665467612</identifier><identifier>EISBN: 1665467614</identifier><identifier>DOI: 10.1109/CDC51059.2022.9992703</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Heuristic algorithms ; Nonlinear dynamical systems ; Numerical models ; Sensors ; Synchronization ; Wireless sensor networks</subject><ispartof>2022 IEEE 61st Conference on Decision and Control (CDC), 2022, p.3580-3585</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9992703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Uzhva, Denis</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><title>Compressed Cluster Sensing in Multiagent IoT Control</title><title>2022 IEEE 61st Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>Traditional multiagent system control relies primarily on inter-agent local communications. In large-scale IoT systems it may appear hard to synthesize local control actions in a simple manner. Cluster control possibilities are thus thoroughly discussed, with possible control goals stated. The relation between multiagent state sparsity and cluster patterns is illustrated, for further utilization of sparsity for cluster control. Consequently, the problem of cluster identification is stated, and a possible solution is proposed in the form of the compressed cluster sensing algorithm. The algorithm utilizes compressed sensing methodology for a compact representation of agent states, which is then used to synthesize compact control actions in a low-dimensional space, without requiring to specify cluster locations.</description><subject>Clustering algorithms</subject><subject>Heuristic algorithms</subject><subject>Nonlinear dynamical systems</subject><subject>Numerical models</subject><subject>Sensors</subject><subject>Synchronization</subject><subject>Wireless sensor networks</subject><issn>2576-2370</issn><isbn>9781665467612</isbn><isbn>1665467614</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz7FOwzAQgGGDhEQpfQKE5BdIsH0-OzciA6VSEQNlrpzkUhmlSRWnA2_PQKd_-6RfiEetSq0VPYWXgFohlUYZUxKR8QquxIp8pZ1D67zT5losDHpXGPDqVtzl_KMUEFlYCBvG42ninLmVoT_nmSf5xUNOw0GmQX6c-znFAw-z3Iw7GcZhnsb-Xtx0sc-8unQpvt9ed-G92H6uN-F5WyQNMBcOWVmqY40N2bohil2FjfMIWnNnbQ0WqVXguqoxpmpqTw5a5SyjJocES_Hw7yZm3p-mdIzT7_4yCX9wWkTw</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Uzhva, Denis</creator><creator>Granichin, Oleg</creator><creator>Granichina, Olga</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221206</creationdate><title>Compressed Cluster Sensing in Multiagent IoT Control</title><author>Uzhva, Denis ; Granichin, Oleg ; Granichina, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-65e049bab5c94bc99af85c675311ef44b3459d036f8c228cb7963d064e5196593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clustering algorithms</topic><topic>Heuristic algorithms</topic><topic>Nonlinear dynamical systems</topic><topic>Numerical models</topic><topic>Sensors</topic><topic>Synchronization</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Uzhva, Denis</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uzhva, Denis</au><au>Granichin, Oleg</au><au>Granichina, Olga</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compressed Cluster Sensing in Multiagent IoT Control</atitle><btitle>2022 IEEE 61st Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2022-12-06</date><risdate>2022</risdate><spage>3580</spage><epage>3585</epage><pages>3580-3585</pages><eissn>2576-2370</eissn><eisbn>9781665467612</eisbn><eisbn>1665467614</eisbn><abstract>Traditional multiagent system control relies primarily on inter-agent local communications. In large-scale IoT systems it may appear hard to synthesize local control actions in a simple manner. Cluster control possibilities are thus thoroughly discussed, with possible control goals stated. The relation between multiagent state sparsity and cluster patterns is illustrated, for further utilization of sparsity for cluster control. Consequently, the problem of cluster identification is stated, and a possible solution is proposed in the form of the compressed cluster sensing algorithm. The algorithm utilizes compressed sensing methodology for a compact representation of agent states, which is then used to synthesize compact control actions in a low-dimensional space, without requiring to specify cluster locations.</abstract><pub>IEEE</pub><doi>10.1109/CDC51059.2022.9992703</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-2370
ispartof 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, p.3580-3585
issn 2576-2370
language eng
recordid cdi_ieee_primary_9992703
source IEEE Xplore All Conference Series
subjects Clustering algorithms
Heuristic algorithms
Nonlinear dynamical systems
Numerical models
Sensors
Synchronization
Wireless sensor networks
title Compressed Cluster Sensing in Multiagent IoT Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compressed%20Cluster%20Sensing%20in%20Multiagent%20IoT%20Control&rft.btitle=2022%20IEEE%2061st%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Uzhva,%20Denis&rft.date=2022-12-06&rft.spage=3580&rft.epage=3585&rft.pages=3580-3585&rft.eissn=2576-2370&rft_id=info:doi/10.1109/CDC51059.2022.9992703&rft.eisbn=9781665467612&rft.eisbn_list=1665467614&rft_dat=%3Cieee_CHZPO%3E9992703%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-65e049bab5c94bc99af85c675311ef44b3459d036f8c228cb7963d064e5196593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9992703&rfr_iscdi=true