Loading…
Modelling and initialization of fractional order nonlinear systems: the infinite state approach
In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional di...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 47 |
container_issue | |
container_start_page | 42 |
container_title | |
container_volume | |
creator | Maamri, N. Trigeassou, J.C. |
description | In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability. |
doi_str_mv | 10.1109/ICSC57768.2022.9993954 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9993954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9993954</ieee_id><sourcerecordid>9993954</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-c34c6805adc7615caf98bf2e6ef7ad808e4ebb3a1959a66c5eb849c760b2b1fc3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEqX0CZCQXyBlHcd_3FAEpVIRB-BcbZw1NUqTys6lPD2p6GVmDt_MYRi7F7AUAtzDuv6olTHaLksoy6VzTjpVXbAbobWqtAJjLtmslMYVANpcs0XOPwAghXUgzIxt34aWui723xz7lsc-jhG7-ItjHHo-BB4S-lPGjg-ppcT7oZ9wwsTzMY-0z4983NHUDKcy8TzipHg4pAH97pZdBewyLc4-Z18vz5_1a7F5X63rp00RhZRj4WXltQWFrTdaKI_B2SaUpCkYbC1YqqhpJAqnHGrtFTW2chMLTdmI4OWc3f3vRiLaHlLcYzpuz3_IPz7bV_o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</title><source>IEEE Xplore All Conference Series</source><creator>Maamri, N. ; Trigeassou, J.C.</creator><creatorcontrib>Maamri, N. ; Trigeassou, J.C.</creatorcontrib><description>In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability.</description><identifier>EISSN: 2379-0067</identifier><identifier>EISBN: 1665465077</identifier><identifier>EISBN: 9781665465076</identifier><identifier>DOI: 10.1109/ICSC57768.2022.9993954</identifier><language>eng</language><publisher>IEEE</publisher><subject>Behavioral sciences ; Control systems ; frequency distributed state variable ; infinite state representation ; initialization ; Lyapunov stability ; modal model of the fractional integrator ; nonlinear FDS ; Nonlinear systems ; Numerical models ; Numerical simulation ; Numerical stability ; Stability analysis</subject><ispartof>2022 10th International Conference on Systems and Control (ICSC), 2022, p.42-47</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9993954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,23919,23920,25129,27914,54544,54921</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9993954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maamri, N.</creatorcontrib><creatorcontrib>Trigeassou, J.C.</creatorcontrib><title>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</title><title>2022 10th International Conference on Systems and Control (ICSC)</title><addtitle>ICSC</addtitle><description>In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability.</description><subject>Behavioral sciences</subject><subject>Control systems</subject><subject>frequency distributed state variable</subject><subject>infinite state representation</subject><subject>initialization</subject><subject>Lyapunov stability</subject><subject>modal model of the fractional integrator</subject><subject>nonlinear FDS</subject><subject>Nonlinear systems</subject><subject>Numerical models</subject><subject>Numerical simulation</subject><subject>Numerical stability</subject><subject>Stability analysis</subject><issn>2379-0067</issn><isbn>1665465077</isbn><isbn>9781665465076</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEqX0CZCQXyBlHcd_3FAEpVIRB-BcbZw1NUqTys6lPD2p6GVmDt_MYRi7F7AUAtzDuv6olTHaLksoy6VzTjpVXbAbobWqtAJjLtmslMYVANpcs0XOPwAghXUgzIxt34aWui723xz7lsc-jhG7-ItjHHo-BB4S-lPGjg-ppcT7oZ9wwsTzMY-0z4983NHUDKcy8TzipHg4pAH97pZdBewyLc4-Z18vz5_1a7F5X63rp00RhZRj4WXltQWFrTdaKI_B2SaUpCkYbC1YqqhpJAqnHGrtFTW2chMLTdmI4OWc3f3vRiLaHlLcYzpuz3_IPz7bV_o</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Maamri, N.</creator><creator>Trigeassou, J.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221123</creationdate><title>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</title><author>Maamri, N. ; Trigeassou, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-c34c6805adc7615caf98bf2e6ef7ad808e4ebb3a1959a66c5eb849c760b2b1fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral sciences</topic><topic>Control systems</topic><topic>frequency distributed state variable</topic><topic>infinite state representation</topic><topic>initialization</topic><topic>Lyapunov stability</topic><topic>modal model of the fractional integrator</topic><topic>nonlinear FDS</topic><topic>Nonlinear systems</topic><topic>Numerical models</topic><topic>Numerical simulation</topic><topic>Numerical stability</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Maamri, N.</creatorcontrib><creatorcontrib>Trigeassou, J.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maamri, N.</au><au>Trigeassou, J.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</atitle><btitle>2022 10th International Conference on Systems and Control (ICSC)</btitle><stitle>ICSC</stitle><date>2022-11-23</date><risdate>2022</risdate><spage>42</spage><epage>47</epage><pages>42-47</pages><eissn>2379-0067</eissn><eisbn>1665465077</eisbn><eisbn>9781665465076</eisbn><abstract>In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability.</abstract><pub>IEEE</pub><doi>10.1109/ICSC57768.2022.9993954</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-0067 |
ispartof | 2022 10th International Conference on Systems and Control (ICSC), 2022, p.42-47 |
issn | 2379-0067 |
language | eng |
recordid | cdi_ieee_primary_9993954 |
source | IEEE Xplore All Conference Series |
subjects | Behavioral sciences Control systems frequency distributed state variable infinite state representation initialization Lyapunov stability modal model of the fractional integrator nonlinear FDS Nonlinear systems Numerical models Numerical simulation Numerical stability Stability analysis |
title | Modelling and initialization of fractional order nonlinear systems: the infinite state approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modelling%20and%20initialization%20of%20fractional%20order%20nonlinear%20systems:%20the%20infinite%20state%20approach&rft.btitle=2022%2010th%20International%20Conference%20on%20Systems%20and%20Control%20(ICSC)&rft.au=Maamri,%20N.&rft.date=2022-11-23&rft.spage=42&rft.epage=47&rft.pages=42-47&rft.eissn=2379-0067&rft_id=info:doi/10.1109/ICSC57768.2022.9993954&rft.eisbn=1665465077&rft.eisbn_list=9781665465076&rft_dat=%3Cieee_CHZPO%3E9993954%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-c34c6805adc7615caf98bf2e6ef7ad808e4ebb3a1959a66c5eb849c760b2b1fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9993954&rfr_iscdi=true |