Loading…

Modelling and initialization of fractional order nonlinear systems: the infinite state approach

In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional di...

Full description

Saved in:
Bibliographic Details
Main Authors: Maamri, N., Trigeassou, J.C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 47
container_issue
container_start_page 42
container_title
container_volume
creator Maamri, N.
Trigeassou, J.C.
description In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability.
doi_str_mv 10.1109/ICSC57768.2022.9993954
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9993954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9993954</ieee_id><sourcerecordid>9993954</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-c34c6805adc7615caf98bf2e6ef7ad808e4ebb3a1959a66c5eb849c760b2b1fc3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEqX0CZCQXyBlHcd_3FAEpVIRB-BcbZw1NUqTys6lPD2p6GVmDt_MYRi7F7AUAtzDuv6olTHaLksoy6VzTjpVXbAbobWqtAJjLtmslMYVANpcs0XOPwAghXUgzIxt34aWui723xz7lsc-jhG7-ItjHHo-BB4S-lPGjg-ppcT7oZ9wwsTzMY-0z4983NHUDKcy8TzipHg4pAH97pZdBewyLc4-Z18vz5_1a7F5X63rp00RhZRj4WXltQWFrTdaKI_B2SaUpCkYbC1YqqhpJAqnHGrtFTW2chMLTdmI4OWc3f3vRiLaHlLcYzpuz3_IPz7bV_o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</title><source>IEEE Xplore All Conference Series</source><creator>Maamri, N. ; Trigeassou, J.C.</creator><creatorcontrib>Maamri, N. ; Trigeassou, J.C.</creatorcontrib><description>In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability.</description><identifier>EISSN: 2379-0067</identifier><identifier>EISBN: 1665465077</identifier><identifier>EISBN: 9781665465076</identifier><identifier>DOI: 10.1109/ICSC57768.2022.9993954</identifier><language>eng</language><publisher>IEEE</publisher><subject>Behavioral sciences ; Control systems ; frequency distributed state variable ; infinite state representation ; initialization ; Lyapunov stability ; modal model of the fractional integrator ; nonlinear FDS ; Nonlinear systems ; Numerical models ; Numerical simulation ; Numerical stability ; Stability analysis</subject><ispartof>2022 10th International Conference on Systems and Control (ICSC), 2022, p.42-47</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9993954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,23919,23920,25129,27914,54544,54921</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9993954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maamri, N.</creatorcontrib><creatorcontrib>Trigeassou, J.C.</creatorcontrib><title>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</title><title>2022 10th International Conference on Systems and Control (ICSC)</title><addtitle>ICSC</addtitle><description>In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability.</description><subject>Behavioral sciences</subject><subject>Control systems</subject><subject>frequency distributed state variable</subject><subject>infinite state representation</subject><subject>initialization</subject><subject>Lyapunov stability</subject><subject>modal model of the fractional integrator</subject><subject>nonlinear FDS</subject><subject>Nonlinear systems</subject><subject>Numerical models</subject><subject>Numerical simulation</subject><subject>Numerical stability</subject><subject>Stability analysis</subject><issn>2379-0067</issn><isbn>1665465077</isbn><isbn>9781665465076</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEqX0CZCQXyBlHcd_3FAEpVIRB-BcbZw1NUqTys6lPD2p6GVmDt_MYRi7F7AUAtzDuv6olTHaLksoy6VzTjpVXbAbobWqtAJjLtmslMYVANpcs0XOPwAghXUgzIxt34aWui723xz7lsc-jhG7-ItjHHo-BB4S-lPGjg-ppcT7oZ9wwsTzMY-0z4983NHUDKcy8TzipHg4pAH97pZdBewyLc4-Z18vz5_1a7F5X63rp00RhZRj4WXltQWFrTdaKI_B2SaUpCkYbC1YqqhpJAqnHGrtFTW2chMLTdmI4OWc3f3vRiLaHlLcYzpuz3_IPz7bV_o</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Maamri, N.</creator><creator>Trigeassou, J.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221123</creationdate><title>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</title><author>Maamri, N. ; Trigeassou, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-c34c6805adc7615caf98bf2e6ef7ad808e4ebb3a1959a66c5eb849c760b2b1fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral sciences</topic><topic>Control systems</topic><topic>frequency distributed state variable</topic><topic>infinite state representation</topic><topic>initialization</topic><topic>Lyapunov stability</topic><topic>modal model of the fractional integrator</topic><topic>nonlinear FDS</topic><topic>Nonlinear systems</topic><topic>Numerical models</topic><topic>Numerical simulation</topic><topic>Numerical stability</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Maamri, N.</creatorcontrib><creatorcontrib>Trigeassou, J.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maamri, N.</au><au>Trigeassou, J.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modelling and initialization of fractional order nonlinear systems: the infinite state approach</atitle><btitle>2022 10th International Conference on Systems and Control (ICSC)</btitle><stitle>ICSC</stitle><date>2022-11-23</date><risdate>2022</risdate><spage>42</spage><epage>47</epage><pages>42-47</pages><eissn>2379-0067</eissn><eisbn>1665465077</eisbn><eisbn>9781665465076</eisbn><abstract>In this paper, we generalize the infinite state representation to the modeling of fractional order nonlinear differential systems. This technique is based on the infinite dimension modal model of the fractional integrator whose internal frequency distributed state defines the nonlinear fractional differential systems (FDS) state. Thanks to numerical simulations, we demonstrate that system dynamical behaviors are dependant on infinite dimension distributed initial conditions. Moreover, we show that these initial conditions have a direct consequence on system stability.</abstract><pub>IEEE</pub><doi>10.1109/ICSC57768.2022.9993954</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-0067
ispartof 2022 10th International Conference on Systems and Control (ICSC), 2022, p.42-47
issn 2379-0067
language eng
recordid cdi_ieee_primary_9993954
source IEEE Xplore All Conference Series
subjects Behavioral sciences
Control systems
frequency distributed state variable
infinite state representation
initialization
Lyapunov stability
modal model of the fractional integrator
nonlinear FDS
Nonlinear systems
Numerical models
Numerical simulation
Numerical stability
Stability analysis
title Modelling and initialization of fractional order nonlinear systems: the infinite state approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modelling%20and%20initialization%20of%20fractional%20order%20nonlinear%20systems:%20the%20infinite%20state%20approach&rft.btitle=2022%2010th%20International%20Conference%20on%20Systems%20and%20Control%20(ICSC)&rft.au=Maamri,%20N.&rft.date=2022-11-23&rft.spage=42&rft.epage=47&rft.pages=42-47&rft.eissn=2379-0067&rft_id=info:doi/10.1109/ICSC57768.2022.9993954&rft.eisbn=1665465077&rft.eisbn_list=9781665465076&rft_dat=%3Cieee_CHZPO%3E9993954%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-c34c6805adc7615caf98bf2e6ef7ad808e4ebb3a1959a66c5eb849c760b2b1fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9993954&rfr_iscdi=true