Loading…

Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network

In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this articl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2023-03, Vol.51 (3), p.913-921
Main Authors: Sethi, Shakti Prasad, Das, Debi Prasad, Behera, Santosh Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3
cites cdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3
container_end_page 921
container_issue 3
container_start_page 913
container_title IEEE transactions on plasma science
container_volume 51
creator Sethi, Shakti Prasad
Das, Debi Prasad
Behera, Santosh Kumar
description In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown.
doi_str_mv 10.1109/TPS.2022.3229199
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9998184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9998184</ieee_id><sourcerecordid>2790136775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkjaZY6mfULRg6zVkd2c1td2tyRbx37u2xdM7DM87Aw9jlyAGAAJv5rPXgRRSDpSUCIhHrAeoMENlhsesJwSqTFlQp-wspaUQoIdC9tjbxLcfTUl81qTQhqbmt9RSsZtCzT2fR1-nimKkko9jwWcrn9aeL1Ko37tFG6pQBL_iz7SNu2i_m_h5zk4qv0p0ccg-W9zfzSeP2fTl4WkynmaFUrbNSEpNelhqIXJltLeE3pC2SDr3VVkZQgJQXo-kkigKCyMoASHPtc0NeNVn1_u7m9h8bSm1btlsY929dNKgADUyZthRYk8VsUkpUuU2Max9_HEg3J8919lzf_bcwV5XudpXAhH944howWr1C7XJao8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790136775</pqid></control><display><type>article</type><title>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</title><source>IEEE Xplore (Online service)</source><creator>Sethi, Shakti Prasad ; Das, Debi Prasad ; Behera, Santosh Kumar</creator><creatorcontrib>Sethi, Shakti Prasad ; Das, Debi Prasad ; Behera, Santosh Kumar</creatorcontrib><description>In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3229199</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anodes ; Artificial neural network (ANN) ; Artificial neural networks ; cathode position detection ; Cathodes ; Direct current ; Electrical measurement ; Feature extraction ; Furnaces ; Machine learning ; Machine learning algorithms ; Metallurgy ; Neural networks ; Plasma ; Plasmas ; Smelting ; transferred arc plasma ; tunable-Q wavelet transform ; Wavelet transforms</subject><ispartof>IEEE transactions on plasma science, 2023-03, Vol.51 (3), p.913-921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</citedby><cites>FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</cites><orcidid>0000-0002-8734-103X ; 0000-0002-8510-9069 ; 0000-0002-4502-1038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9998184$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sethi, Shakti Prasad</creatorcontrib><creatorcontrib>Das, Debi Prasad</creatorcontrib><creatorcontrib>Behera, Santosh Kumar</creatorcontrib><title>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown.</description><subject>Algorithms</subject><subject>Anodes</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>cathode position detection</subject><subject>Cathodes</subject><subject>Direct current</subject><subject>Electrical measurement</subject><subject>Feature extraction</subject><subject>Furnaces</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Metallurgy</subject><subject>Neural networks</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>Smelting</subject><subject>transferred arc plasma</subject><subject>tunable-Q wavelet transform</subject><subject>Wavelet transforms</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkjaZY6mfULRg6zVkd2c1td2tyRbx37u2xdM7DM87Aw9jlyAGAAJv5rPXgRRSDpSUCIhHrAeoMENlhsesJwSqTFlQp-wspaUQoIdC9tjbxLcfTUl81qTQhqbmt9RSsZtCzT2fR1-nimKkko9jwWcrn9aeL1Ko37tFG6pQBL_iz7SNu2i_m_h5zk4qv0p0ccg-W9zfzSeP2fTl4WkynmaFUrbNSEpNelhqIXJltLeE3pC2SDr3VVkZQgJQXo-kkigKCyMoASHPtc0NeNVn1_u7m9h8bSm1btlsY929dNKgADUyZthRYk8VsUkpUuU2Max9_HEg3J8919lzf_bcwV5XudpXAhH944howWr1C7XJao8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Sethi, Shakti Prasad</creator><creator>Das, Debi Prasad</creator><creator>Behera, Santosh Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8734-103X</orcidid><orcidid>https://orcid.org/0000-0002-8510-9069</orcidid><orcidid>https://orcid.org/0000-0002-4502-1038</orcidid></search><sort><creationdate>20230301</creationdate><title>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</title><author>Sethi, Shakti Prasad ; Das, Debi Prasad ; Behera, Santosh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anodes</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>cathode position detection</topic><topic>Cathodes</topic><topic>Direct current</topic><topic>Electrical measurement</topic><topic>Feature extraction</topic><topic>Furnaces</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Metallurgy</topic><topic>Neural networks</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>Smelting</topic><topic>transferred arc plasma</topic><topic>tunable-Q wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethi, Shakti Prasad</creatorcontrib><creatorcontrib>Das, Debi Prasad</creatorcontrib><creatorcontrib>Behera, Santosh Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethi, Shakti Prasad</au><au>Das, Debi Prasad</au><au>Behera, Santosh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>51</volume><issue>3</issue><spage>913</spage><epage>921</epage><pages>913-921</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3229199</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8734-103X</orcidid><orcidid>https://orcid.org/0000-0002-8510-9069</orcidid><orcidid>https://orcid.org/0000-0002-4502-1038</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2023-03, Vol.51 (3), p.913-921
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_9998184
source IEEE Xplore (Online service)
subjects Algorithms
Anodes
Artificial neural network (ANN)
Artificial neural networks
cathode position detection
Cathodes
Direct current
Electrical measurement
Feature extraction
Furnaces
Machine learning
Machine learning algorithms
Metallurgy
Neural networks
Plasma
Plasmas
Smelting
transferred arc plasma
tunable-Q wavelet transform
Wavelet transforms
title Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20Position%20Detection%20in%20a%20Transferred%20Arc%20Plasma%20Using%20Artificial%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Sethi,%20Shakti%20Prasad&rft.date=2023-03-01&rft.volume=51&rft.issue=3&rft.spage=913&rft.epage=921&rft.pages=913-921&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3229199&rft_dat=%3Cproquest_ieee_%3E2790136775%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2790136775&rft_id=info:pmid/&rft_ieee_id=9998184&rfr_iscdi=true