Loading…
Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network
In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this articl...
Saved in:
Published in: | IEEE transactions on plasma science 2023-03, Vol.51 (3), p.913-921 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3 |
container_end_page | 921 |
container_issue | 3 |
container_start_page | 913 |
container_title | IEEE transactions on plasma science |
container_volume | 51 |
creator | Sethi, Shakti Prasad Das, Debi Prasad Behera, Santosh Kumar |
description | In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown. |
doi_str_mv | 10.1109/TPS.2022.3229199 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9998184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9998184</ieee_id><sourcerecordid>2790136775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkjaZY6mfULRg6zVkd2c1td2tyRbx37u2xdM7DM87Aw9jlyAGAAJv5rPXgRRSDpSUCIhHrAeoMENlhsesJwSqTFlQp-wspaUQoIdC9tjbxLcfTUl81qTQhqbmt9RSsZtCzT2fR1-nimKkko9jwWcrn9aeL1Ko37tFG6pQBL_iz7SNu2i_m_h5zk4qv0p0ccg-W9zfzSeP2fTl4WkynmaFUrbNSEpNelhqIXJltLeE3pC2SDr3VVkZQgJQXo-kkigKCyMoASHPtc0NeNVn1_u7m9h8bSm1btlsY929dNKgADUyZthRYk8VsUkpUuU2Max9_HEg3J8919lzf_bcwV5XudpXAhH944howWr1C7XJao8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790136775</pqid></control><display><type>article</type><title>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</title><source>IEEE Xplore (Online service)</source><creator>Sethi, Shakti Prasad ; Das, Debi Prasad ; Behera, Santosh Kumar</creator><creatorcontrib>Sethi, Shakti Prasad ; Das, Debi Prasad ; Behera, Santosh Kumar</creatorcontrib><description>In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3229199</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anodes ; Artificial neural network (ANN) ; Artificial neural networks ; cathode position detection ; Cathodes ; Direct current ; Electrical measurement ; Feature extraction ; Furnaces ; Machine learning ; Machine learning algorithms ; Metallurgy ; Neural networks ; Plasma ; Plasmas ; Smelting ; transferred arc plasma ; tunable-Q wavelet transform ; Wavelet transforms</subject><ispartof>IEEE transactions on plasma science, 2023-03, Vol.51 (3), p.913-921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</citedby><cites>FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</cites><orcidid>0000-0002-8734-103X ; 0000-0002-8510-9069 ; 0000-0002-4502-1038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9998184$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sethi, Shakti Prasad</creatorcontrib><creatorcontrib>Das, Debi Prasad</creatorcontrib><creatorcontrib>Behera, Santosh Kumar</creatorcontrib><title>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown.</description><subject>Algorithms</subject><subject>Anodes</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>cathode position detection</subject><subject>Cathodes</subject><subject>Direct current</subject><subject>Electrical measurement</subject><subject>Feature extraction</subject><subject>Furnaces</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Metallurgy</subject><subject>Neural networks</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>Smelting</subject><subject>transferred arc plasma</subject><subject>tunable-Q wavelet transform</subject><subject>Wavelet transforms</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkjaZY6mfULRg6zVkd2c1td2tyRbx37u2xdM7DM87Aw9jlyAGAAJv5rPXgRRSDpSUCIhHrAeoMENlhsesJwSqTFlQp-wspaUQoIdC9tjbxLcfTUl81qTQhqbmt9RSsZtCzT2fR1-nimKkko9jwWcrn9aeL1Ko37tFG6pQBL_iz7SNu2i_m_h5zk4qv0p0ccg-W9zfzSeP2fTl4WkynmaFUrbNSEpNelhqIXJltLeE3pC2SDr3VVkZQgJQXo-kkigKCyMoASHPtc0NeNVn1_u7m9h8bSm1btlsY929dNKgADUyZthRYk8VsUkpUuU2Max9_HEg3J8919lzf_bcwV5XudpXAhH944howWr1C7XJao8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Sethi, Shakti Prasad</creator><creator>Das, Debi Prasad</creator><creator>Behera, Santosh Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8734-103X</orcidid><orcidid>https://orcid.org/0000-0002-8510-9069</orcidid><orcidid>https://orcid.org/0000-0002-4502-1038</orcidid></search><sort><creationdate>20230301</creationdate><title>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</title><author>Sethi, Shakti Prasad ; Das, Debi Prasad ; Behera, Santosh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anodes</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>cathode position detection</topic><topic>Cathodes</topic><topic>Direct current</topic><topic>Electrical measurement</topic><topic>Feature extraction</topic><topic>Furnaces</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Metallurgy</topic><topic>Neural networks</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>Smelting</topic><topic>transferred arc plasma</topic><topic>tunable-Q wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethi, Shakti Prasad</creatorcontrib><creatorcontrib>Das, Debi Prasad</creatorcontrib><creatorcontrib>Behera, Santosh Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethi, Shakti Prasad</au><au>Das, Debi Prasad</au><au>Behera, Santosh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>51</volume><issue>3</issue><spage>913</spage><epage>921</epage><pages>913-921</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>In a transferred arc plasma system, the position of the cathode is difficult to detect during the smelting process as it remains inside the cylindrical anode. Real-time and accurate cathode position detection leads to efficient smelting operation with optimal use of electrical energy. In this article, a machine learning technique is proposed to accurately detect the position of the cathode in a direct current (DC) transferred arc plasma system. The measured voltage signal sampled at 20 kHz is processed using a tunable Q-factor wavelet transform (TQWT) followed by statistical features extraction and a machine learning algorithm to provide accurate cathode position information. Two different machine learning algorithms are used in this work, namely, single hidden layer neural network (SHLNN) and single-layer extreme learning machine (SELM). The output of these machine learning algorithms provides accurate position information and is also compared to the traditional voltage-related position information. The experimental signal of a 30-kW DC plasma system and cathode position detection results is shown.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3229199</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8734-103X</orcidid><orcidid>https://orcid.org/0000-0002-8510-9069</orcidid><orcidid>https://orcid.org/0000-0002-4502-1038</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2023-03, Vol.51 (3), p.913-921 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_9998184 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Anodes Artificial neural network (ANN) Artificial neural networks cathode position detection Cathodes Direct current Electrical measurement Feature extraction Furnaces Machine learning Machine learning algorithms Metallurgy Neural networks Plasma Plasmas Smelting transferred arc plasma tunable-Q wavelet transform Wavelet transforms |
title | Cathode Position Detection in a Transferred Arc Plasma Using Artificial Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20Position%20Detection%20in%20a%20Transferred%20Arc%20Plasma%20Using%20Artificial%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Sethi,%20Shakti%20Prasad&rft.date=2023-03-01&rft.volume=51&rft.issue=3&rft.spage=913&rft.epage=921&rft.pages=913-921&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3229199&rft_dat=%3Cproquest_ieee_%3E2790136775%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-e224e45d400b374a8e9a7e489e4bafdf7e9e113a4623290c8161d191bb48b71a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2790136775&rft_id=info:pmid/&rft_ieee_id=9998184&rfr_iscdi=true |