Loading…
A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction
Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity...
Saved in:
Published in: | IEEE wireless communications letters 2023-08, Vol.12 (8), p.1299-1303 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913 |
container_end_page | 1303 |
container_issue | 8 |
container_start_page | 1299 |
container_title | IEEE wireless communications letters |
container_volume | 12 |
creator | Jiang, Yuanhao Zhou, Shidong Zhong, Xiaofeng |
description | Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT). |
doi_str_mv | 10.1109/LWC.2022.3232380 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9999557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999557</ieee_id><sourcerecordid>2847965573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWFhjT3Qi-Cnu1KK1uWjsb0BS7JoaVHoVhSo5DEqawU8veVScjsYXdhZnYZhO4pySkl8qn9bnIgADmDVIJcoQlQDhmwory-zKy6RbNhWJMETihQMUHzGjd645dBR2vwwoatj9H_-XjEH72xG7_7wfV-H3rdrbDrA25CPwxZHazGCx1XuE0rXgRrfBd9v7tDN05vBjs79yn6enn-bN6ydv763tRt1kFRxEyasrTS6I4IqZl0FIxgzHHhuNXAeFlURnCnC1gCSZPsDNAKLOglS3zKpujx5Jte-z3YIap1fwi7dFKBKCrJy7JiiUVOrG78Olin9sFvdTgqStSYnErJqTE5dU4uSR5OEm-tvdBlwuj4D-nsaF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847965573</pqid></control><display><type>article</type><title>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</title><source>IEEE Xplore (Online service)</source><creator>Jiang, Yuanhao ; Zhou, Shidong ; Zhong, Xiaofeng</creator><creatorcontrib>Jiang, Yuanhao ; Zhou, Shidong ; Zhong, Xiaofeng</creatorcontrib><description>Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT).</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3232380</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Buildings ; calibrated permittivity modeling ; Calibration ; Data models ; Loss measurement ; Message passing ; Modelling ; Optimization ; Path loss prediction ; Permittivity ; Permittivity measurement ; Predictive models ; radio propagation ; Ray tracing ; Reference signals ; Wavelength measurement ; Wireless communications</subject><ispartof>IEEE wireless communications letters, 2023-08, Vol.12 (8), p.1299-1303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913</cites><orcidid>0000-0003-3307-0067 ; 0000-0002-3674-9780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Jiang, Yuanhao</creatorcontrib><creatorcontrib>Zhou, Shidong</creatorcontrib><creatorcontrib>Zhong, Xiaofeng</creatorcontrib><title>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT).</description><subject>Algorithms</subject><subject>Buildings</subject><subject>calibrated permittivity modeling</subject><subject>Calibration</subject><subject>Data models</subject><subject>Loss measurement</subject><subject>Message passing</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Path loss prediction</subject><subject>Permittivity</subject><subject>Permittivity measurement</subject><subject>Predictive models</subject><subject>radio propagation</subject><subject>Ray tracing</subject><subject>Reference signals</subject><subject>Wavelength measurement</subject><subject>Wireless communications</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqwzAQFKWFhjT3Qi-Cnu1KK1uWjsb0BS7JoaVHoVhSo5DEqawU8veVScjsYXdhZnYZhO4pySkl8qn9bnIgADmDVIJcoQlQDhmwory-zKy6RbNhWJMETihQMUHzGjd645dBR2vwwoatj9H_-XjEH72xG7_7wfV-H3rdrbDrA25CPwxZHazGCx1XuE0rXgRrfBd9v7tDN05vBjs79yn6enn-bN6ydv763tRt1kFRxEyasrTS6I4IqZl0FIxgzHHhuNXAeFlURnCnC1gCSZPsDNAKLOglS3zKpujx5Jte-z3YIap1fwi7dFKBKCrJy7JiiUVOrG78Olin9sFvdTgqStSYnErJqTE5dU4uSR5OEm-tvdBlwuj4D-nsaF0</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jiang, Yuanhao</creator><creator>Zhou, Shidong</creator><creator>Zhong, Xiaofeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3307-0067</orcidid><orcidid>https://orcid.org/0000-0002-3674-9780</orcidid></search><sort><creationdate>20230801</creationdate><title>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</title><author>Jiang, Yuanhao ; Zhou, Shidong ; Zhong, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Buildings</topic><topic>calibrated permittivity modeling</topic><topic>Calibration</topic><topic>Data models</topic><topic>Loss measurement</topic><topic>Message passing</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Path loss prediction</topic><topic>Permittivity</topic><topic>Permittivity measurement</topic><topic>Predictive models</topic><topic>radio propagation</topic><topic>Ray tracing</topic><topic>Reference signals</topic><topic>Wavelength measurement</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yuanhao</creatorcontrib><creatorcontrib>Zhou, Shidong</creatorcontrib><creatorcontrib>Zhong, Xiaofeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yuanhao</au><au>Zhou, Shidong</au><au>Zhong, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>8</issue><spage>1299</spage><epage>1303</epage><pages>1299-1303</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3232380</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3307-0067</orcidid><orcidid>https://orcid.org/0000-0002-3674-9780</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2023-08, Vol.12 (8), p.1299-1303 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_ieee_primary_9999557 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Buildings calibrated permittivity modeling Calibration Data models Loss measurement Message passing Modelling Optimization Path loss prediction Permittivity Permittivity measurement Predictive models radio propagation Ray tracing Reference signals Wavelength measurement Wireless communications |
title | A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Calibrated%20Permittivity%20Modeling%20Approach%20for%20Cross-Area%20Path%20Loss%20Prediction&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Jiang,%20Yuanhao&rft.date=2023-08-01&rft.volume=12&rft.issue=8&rft.spage=1299&rft.epage=1303&rft.pages=1299-1303&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3232380&rft_dat=%3Cproquest_ieee_%3E2847965573%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847965573&rft_id=info:pmid/&rft_ieee_id=9999557&rfr_iscdi=true |