Loading…

A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction

Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity...

Full description

Saved in:
Bibliographic Details
Published in:IEEE wireless communications letters 2023-08, Vol.12 (8), p.1299-1303
Main Authors: Jiang, Yuanhao, Zhou, Shidong, Zhong, Xiaofeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913
container_end_page 1303
container_issue 8
container_start_page 1299
container_title IEEE wireless communications letters
container_volume 12
creator Jiang, Yuanhao
Zhou, Shidong
Zhong, Xiaofeng
description Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT).
doi_str_mv 10.1109/LWC.2022.3232380
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9999557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999557</ieee_id><sourcerecordid>2847965573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWFhjT3Qi-Cnu1KK1uWjsb0BS7JoaVHoVhSo5DEqawU8veVScjsYXdhZnYZhO4pySkl8qn9bnIgADmDVIJcoQlQDhmwory-zKy6RbNhWJMETihQMUHzGjd645dBR2vwwoatj9H_-XjEH72xG7_7wfV-H3rdrbDrA25CPwxZHazGCx1XuE0rXgRrfBd9v7tDN05vBjs79yn6enn-bN6ydv763tRt1kFRxEyasrTS6I4IqZl0FIxgzHHhuNXAeFlURnCnC1gCSZPsDNAKLOglS3zKpujx5Jte-z3YIap1fwi7dFKBKCrJy7JiiUVOrG78Olin9sFvdTgqStSYnErJqTE5dU4uSR5OEm-tvdBlwuj4D-nsaF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847965573</pqid></control><display><type>article</type><title>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</title><source>IEEE Xplore (Online service)</source><creator>Jiang, Yuanhao ; Zhou, Shidong ; Zhong, Xiaofeng</creator><creatorcontrib>Jiang, Yuanhao ; Zhou, Shidong ; Zhong, Xiaofeng</creatorcontrib><description>Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT).</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3232380</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Buildings ; calibrated permittivity modeling ; Calibration ; Data models ; Loss measurement ; Message passing ; Modelling ; Optimization ; Path loss prediction ; Permittivity ; Permittivity measurement ; Predictive models ; radio propagation ; Ray tracing ; Reference signals ; Wavelength measurement ; Wireless communications</subject><ispartof>IEEE wireless communications letters, 2023-08, Vol.12 (8), p.1299-1303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913</cites><orcidid>0000-0003-3307-0067 ; 0000-0002-3674-9780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Jiang, Yuanhao</creatorcontrib><creatorcontrib>Zhou, Shidong</creatorcontrib><creatorcontrib>Zhong, Xiaofeng</creatorcontrib><title>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT).</description><subject>Algorithms</subject><subject>Buildings</subject><subject>calibrated permittivity modeling</subject><subject>Calibration</subject><subject>Data models</subject><subject>Loss measurement</subject><subject>Message passing</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Path loss prediction</subject><subject>Permittivity</subject><subject>Permittivity measurement</subject><subject>Predictive models</subject><subject>radio propagation</subject><subject>Ray tracing</subject><subject>Reference signals</subject><subject>Wavelength measurement</subject><subject>Wireless communications</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqwzAQFKWFhjT3Qi-Cnu1KK1uWjsb0BS7JoaVHoVhSo5DEqawU8veVScjsYXdhZnYZhO4pySkl8qn9bnIgADmDVIJcoQlQDhmwory-zKy6RbNhWJMETihQMUHzGjd645dBR2vwwoatj9H_-XjEH72xG7_7wfV-H3rdrbDrA25CPwxZHazGCx1XuE0rXgRrfBd9v7tDN05vBjs79yn6enn-bN6ydv763tRt1kFRxEyasrTS6I4IqZl0FIxgzHHhuNXAeFlURnCnC1gCSZPsDNAKLOglS3zKpujx5Jte-z3YIap1fwi7dFKBKCrJy7JiiUVOrG78Olin9sFvdTgqStSYnErJqTE5dU4uSR5OEm-tvdBlwuj4D-nsaF0</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jiang, Yuanhao</creator><creator>Zhou, Shidong</creator><creator>Zhong, Xiaofeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3307-0067</orcidid><orcidid>https://orcid.org/0000-0002-3674-9780</orcidid></search><sort><creationdate>20230801</creationdate><title>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</title><author>Jiang, Yuanhao ; Zhou, Shidong ; Zhong, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Buildings</topic><topic>calibrated permittivity modeling</topic><topic>Calibration</topic><topic>Data models</topic><topic>Loss measurement</topic><topic>Message passing</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Path loss prediction</topic><topic>Permittivity</topic><topic>Permittivity measurement</topic><topic>Predictive models</topic><topic>radio propagation</topic><topic>Ray tracing</topic><topic>Reference signals</topic><topic>Wavelength measurement</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yuanhao</creatorcontrib><creatorcontrib>Zhou, Shidong</creatorcontrib><creatorcontrib>Zhong, Xiaofeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yuanhao</au><au>Zhou, Shidong</au><au>Zhong, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>8</issue><spage>1299</spage><epage>1303</epage><pages>1299-1303</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Accurate path loss prediction (PLP) in target areas (TAs) is required in many wireless communication applications. However, in real-world deployment, there only may be available path loss data outside TAs. In this letter, a framework based on calibrating the modeling of buildings' permittivity for cross-area PLP is proposed, with the advantage of not requiring data from TAs. The proposed framework requires only the Reference Signal Received Power (RSRP) data from other measured areas (MAs, no intersection with TAs), to learn more precise permittivity modeling and indirectly enhance the prediction in TAs. Furthermore, we exploit a message-passing based algorithm and its low-complexity implementation in the optimization of calibrating permittivity modeling, to improve the prediction accuracy and reduce the iterations required. Real-world measurement is performed and the results have revealed a better performance improvement of the proposed method, compared with Random Forest (RF) and ray-tracing (RT).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3232380</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3307-0067</orcidid><orcidid>https://orcid.org/0000-0002-3674-9780</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2023-08, Vol.12 (8), p.1299-1303
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_9999557
source IEEE Xplore (Online service)
subjects Algorithms
Buildings
calibrated permittivity modeling
Calibration
Data models
Loss measurement
Message passing
Modelling
Optimization
Path loss prediction
Permittivity
Permittivity measurement
Predictive models
radio propagation
Ray tracing
Reference signals
Wavelength measurement
Wireless communications
title A Calibrated Permittivity Modeling Approach for Cross-Area Path Loss Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Calibrated%20Permittivity%20Modeling%20Approach%20for%20Cross-Area%20Path%20Loss%20Prediction&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Jiang,%20Yuanhao&rft.date=2023-08-01&rft.volume=12&rft.issue=8&rft.spage=1299&rft.epage=1303&rft.pages=1299-1303&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3232380&rft_dat=%3Cproquest_ieee_%3E2847965573%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-9d55e9dac089a39f12d833f68f6ea236547d86fa42b20d869cd2172e2ab3a3913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847965573&rft_id=info:pmid/&rft_ieee_id=9999557&rfr_iscdi=true