Loading…
Symbolic calculus for class of quantum computing circuits
A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF...
Saved in:
Published in: | Electronics letters 2015-04, Vol.51 (9), p.682-684 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53 |
container_end_page | 684 |
container_issue | 9 |
container_start_page | 682 |
container_title | Electronics letters |
container_volume | 51 |
creator | Hadjam, F.Z Moraga, C |
description | A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits. |
doi_str_mv | 10.1049/el.2014.3623 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_el_2014_3623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793267715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgURVuvEDMjAwkHL-SuoRqhaQIjEAEpuVODYycuLWjoX672lUJBiA6ZZH7929CJ1jmGNg4lq7OQHM5rQg9AhNMOWQC4xfj9EEANOcY8FO0SxG2-wZZgUwPEHiadc13lmVqdqp5FLMjA-ZcnWMmTfZNtX9kLpM-W6TBtu_ZcoGlewQz9CJqV3Us685RS_r1fPyPq8e7x6WN1WuKKUkN8wwvjCGGN20lC2AauBtWzBFOcN1Q4gB0WrTkIK3RDNR4LIEUXKgwIuW0ym6PORugt8mHQfZ2ai0c3WvfYoSl4KSoizxSK8OVAUfY9BGboLt6rCTGORYktROjiXJsaQ95wf-YZ3e_WvlqqrI7RoIB_J9kdWDfPcp9Pv__1px8QtdVT-SN62hn2PLgVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793267715</pqid></control><display><type>article</type><title>Symbolic calculus for class of quantum computing circuits</title><source>Wiley_OA刊</source><creator>Hadjam, F.Z ; Moraga, C</creator><creatorcontrib>Hadjam, F.Z ; Moraga, C</creatorcontrib><description>A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2014.3623</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Boolean algebra ; Boolean expressions ; Calculus ; Circuits ; Circuits and systems ; controlled negations ; controlled‐Q gates ; controlling signals ; Gates (circuits) ; independent subcircuits ; logic circuits ; Mathematical analysis ; matrix algebra ; output signal evaluation ; Quantum computing ; quantum computing subcircuits ; quantum gates ; Roots ; symbolic calculus ; target lines ; unitary matrix</subject><ispartof>Electronics letters, 2015-04, Vol.51 (9), p.682-684</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2014.3623$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2014.3623$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2014.3623$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Hadjam, F.Z</creatorcontrib><creatorcontrib>Moraga, C</creatorcontrib><title>Symbolic calculus for class of quantum computing circuits</title><title>Electronics letters</title><description>A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits.</description><subject>Boolean algebra</subject><subject>Boolean expressions</subject><subject>Calculus</subject><subject>Circuits</subject><subject>Circuits and systems</subject><subject>controlled negations</subject><subject>controlled‐Q gates</subject><subject>controlling signals</subject><subject>Gates (circuits)</subject><subject>independent subcircuits</subject><subject>logic circuits</subject><subject>Mathematical analysis</subject><subject>matrix algebra</subject><subject>output signal evaluation</subject><subject>Quantum computing</subject><subject>quantum computing subcircuits</subject><subject>quantum gates</subject><subject>Roots</subject><subject>symbolic calculus</subject><subject>target lines</subject><subject>unitary matrix</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgURVuvEDMjAwkHL-SuoRqhaQIjEAEpuVODYycuLWjoX672lUJBiA6ZZH7929CJ1jmGNg4lq7OQHM5rQg9AhNMOWQC4xfj9EEANOcY8FO0SxG2-wZZgUwPEHiadc13lmVqdqp5FLMjA-ZcnWMmTfZNtX9kLpM-W6TBtu_ZcoGlewQz9CJqV3Us685RS_r1fPyPq8e7x6WN1WuKKUkN8wwvjCGGN20lC2AauBtWzBFOcN1Q4gB0WrTkIK3RDNR4LIEUXKgwIuW0ym6PORugt8mHQfZ2ai0c3WvfYoSl4KSoizxSK8OVAUfY9BGboLt6rCTGORYktROjiXJsaQ95wf-YZ3e_WvlqqrI7RoIB_J9kdWDfPcp9Pv__1px8QtdVT-SN62hn2PLgVA</recordid><startdate>20150430</startdate><enddate>20150430</enddate><creator>Hadjam, F.Z</creator><creator>Moraga, C</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150430</creationdate><title>Symbolic calculus for class of quantum computing circuits</title><author>Hadjam, F.Z ; Moraga, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boolean algebra</topic><topic>Boolean expressions</topic><topic>Calculus</topic><topic>Circuits</topic><topic>Circuits and systems</topic><topic>controlled negations</topic><topic>controlled‐Q gates</topic><topic>controlling signals</topic><topic>Gates (circuits)</topic><topic>independent subcircuits</topic><topic>logic circuits</topic><topic>Mathematical analysis</topic><topic>matrix algebra</topic><topic>output signal evaluation</topic><topic>Quantum computing</topic><topic>quantum computing subcircuits</topic><topic>quantum gates</topic><topic>Roots</topic><topic>symbolic calculus</topic><topic>target lines</topic><topic>unitary matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadjam, F.Z</creatorcontrib><creatorcontrib>Moraga, C</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hadjam, F.Z</au><au>Moraga, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbolic calculus for class of quantum computing circuits</atitle><jtitle>Electronics letters</jtitle><date>2015-04-30</date><risdate>2015</risdate><volume>51</volume><issue>9</issue><spage>682</spage><epage>684</epage><pages>682-684</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2014.3623</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2015-04, Vol.51 (9), p.682-684 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_iet_journals_10_1049_el_2014_3623 |
source | Wiley_OA刊 |
subjects | Boolean algebra Boolean expressions Calculus Circuits Circuits and systems controlled negations controlled‐Q gates controlling signals Gates (circuits) independent subcircuits logic circuits Mathematical analysis matrix algebra output signal evaluation Quantum computing quantum computing subcircuits quantum gates Roots symbolic calculus target lines unitary matrix |
title | Symbolic calculus for class of quantum computing circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbolic%20calculus%20for%20class%20of%20quantum%20computing%20circuits&rft.jtitle=Electronics%20letters&rft.au=Hadjam,%20F.Z&rft.date=2015-04-30&rft.volume=51&rft.issue=9&rft.spage=682&rft.epage=684&rft.pages=682-684&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2014.3623&rft_dat=%3Cproquest_24P%3E1793267715%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793267715&rft_id=info:pmid/&rfr_iscdi=true |