Loading…

Symbolic calculus for class of quantum computing circuits

A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters 2015-04, Vol.51 (9), p.682-684
Main Authors: Hadjam, F.Z, Moraga, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53
container_end_page 684
container_issue 9
container_start_page 682
container_title Electronics letters
container_volume 51
creator Hadjam, F.Z
Moraga, C
description A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits.
doi_str_mv 10.1049/el.2014.3623
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_el_2014_3623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793267715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgURVuvEDMjAwkHL-SuoRqhaQIjEAEpuVODYycuLWjoX672lUJBiA6ZZH7929CJ1jmGNg4lq7OQHM5rQg9AhNMOWQC4xfj9EEANOcY8FO0SxG2-wZZgUwPEHiadc13lmVqdqp5FLMjA-ZcnWMmTfZNtX9kLpM-W6TBtu_ZcoGlewQz9CJqV3Us685RS_r1fPyPq8e7x6WN1WuKKUkN8wwvjCGGN20lC2AauBtWzBFOcN1Q4gB0WrTkIK3RDNR4LIEUXKgwIuW0ym6PORugt8mHQfZ2ai0c3WvfYoSl4KSoizxSK8OVAUfY9BGboLt6rCTGORYktROjiXJsaQ95wf-YZ3e_WvlqqrI7RoIB_J9kdWDfPcp9Pv__1px8QtdVT-SN62hn2PLgVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793267715</pqid></control><display><type>article</type><title>Symbolic calculus for class of quantum computing circuits</title><source>Wiley_OA刊</source><creator>Hadjam, F.Z ; Moraga, C</creator><creatorcontrib>Hadjam, F.Z ; Moraga, C</creatorcontrib><description>A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2014.3623</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Boolean algebra ; Boolean expressions ; Calculus ; Circuits ; Circuits and systems ; controlled negations ; controlled‐Q gates ; controlling signals ; Gates (circuits) ; independent subcircuits ; logic circuits ; Mathematical analysis ; matrix algebra ; output signal evaluation ; Quantum computing ; quantum computing subcircuits ; quantum gates ; Roots ; symbolic calculus ; target lines ; unitary matrix</subject><ispartof>Electronics letters, 2015-04, Vol.51 (9), p.682-684</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2014.3623$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2014.3623$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2014.3623$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Hadjam, F.Z</creatorcontrib><creatorcontrib>Moraga, C</creatorcontrib><title>Symbolic calculus for class of quantum computing circuits</title><title>Electronics letters</title><description>A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits.</description><subject>Boolean algebra</subject><subject>Boolean expressions</subject><subject>Calculus</subject><subject>Circuits</subject><subject>Circuits and systems</subject><subject>controlled negations</subject><subject>controlled‐Q gates</subject><subject>controlling signals</subject><subject>Gates (circuits)</subject><subject>independent subcircuits</subject><subject>logic circuits</subject><subject>Mathematical analysis</subject><subject>matrix algebra</subject><subject>output signal evaluation</subject><subject>Quantum computing</subject><subject>quantum computing subcircuits</subject><subject>quantum gates</subject><subject>Roots</subject><subject>symbolic calculus</subject><subject>target lines</subject><subject>unitary matrix</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgURVuvEDMjAwkHL-SuoRqhaQIjEAEpuVODYycuLWjoX672lUJBiA6ZZH7929CJ1jmGNg4lq7OQHM5rQg9AhNMOWQC4xfj9EEANOcY8FO0SxG2-wZZgUwPEHiadc13lmVqdqp5FLMjA-ZcnWMmTfZNtX9kLpM-W6TBtu_ZcoGlewQz9CJqV3Us685RS_r1fPyPq8e7x6WN1WuKKUkN8wwvjCGGN20lC2AauBtWzBFOcN1Q4gB0WrTkIK3RDNR4LIEUXKgwIuW0ym6PORugt8mHQfZ2ai0c3WvfYoSl4KSoizxSK8OVAUfY9BGboLt6rCTGORYktROjiXJsaQ95wf-YZ3e_WvlqqrI7RoIB_J9kdWDfPcp9Pv__1px8QtdVT-SN62hn2PLgVA</recordid><startdate>20150430</startdate><enddate>20150430</enddate><creator>Hadjam, F.Z</creator><creator>Moraga, C</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150430</creationdate><title>Symbolic calculus for class of quantum computing circuits</title><author>Hadjam, F.Z ; Moraga, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boolean algebra</topic><topic>Boolean expressions</topic><topic>Calculus</topic><topic>Circuits</topic><topic>Circuits and systems</topic><topic>controlled negations</topic><topic>controlled‐Q gates</topic><topic>controlling signals</topic><topic>Gates (circuits)</topic><topic>independent subcircuits</topic><topic>logic circuits</topic><topic>Mathematical analysis</topic><topic>matrix algebra</topic><topic>output signal evaluation</topic><topic>Quantum computing</topic><topic>quantum computing subcircuits</topic><topic>quantum gates</topic><topic>Roots</topic><topic>symbolic calculus</topic><topic>target lines</topic><topic>unitary matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadjam, F.Z</creatorcontrib><creatorcontrib>Moraga, C</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hadjam, F.Z</au><au>Moraga, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbolic calculus for class of quantum computing circuits</atitle><jtitle>Electronics letters</jtitle><date>2015-04-30</date><risdate>2015</risdate><volume>51</volume><issue>9</issue><spage>682</spage><epage>684</epage><pages>682-684</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>A symbolic calculus to evaluate the output signals at the target line(s) of quantum computing subcircuits using controlled negations and controlled-Q gates is introduced, where Q represents the kth root of [0 1; 1 0], the unitary matrix of NOT, and k is a power of two. The controlling signals are GF(2) expressions possibly including Boolean expressions. The method does not require operating with complex-valued matrices. The method may be used to verify the functionality and to check for possible minimisation of a given quantum computing circuit using target lines. The method does not apply for a whole circuit if there are interactions among target lines. In this case the method applies for the independent subcircuits.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2014.3623</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2015-04, Vol.51 (9), p.682-684
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_iet_journals_10_1049_el_2014_3623
source Wiley_OA刊
subjects Boolean algebra
Boolean expressions
Calculus
Circuits
Circuits and systems
controlled negations
controlled‐Q gates
controlling signals
Gates (circuits)
independent subcircuits
logic circuits
Mathematical analysis
matrix algebra
output signal evaluation
Quantum computing
quantum computing subcircuits
quantum gates
Roots
symbolic calculus
target lines
unitary matrix
title Symbolic calculus for class of quantum computing circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbolic%20calculus%20for%20class%20of%20quantum%20computing%20circuits&rft.jtitle=Electronics%20letters&rft.au=Hadjam,%20F.Z&rft.date=2015-04-30&rft.volume=51&rft.issue=9&rft.spage=682&rft.epage=684&rft.pages=682-684&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2014.3623&rft_dat=%3Cproquest_24P%3E1793267715%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3332-f4f458ff2febd34803e05dd64c3541ab22f09defb265d2e496177097503056d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793267715&rft_id=info:pmid/&rfr_iscdi=true