Loading…

High-performance, low-cost, and highly reliable radiation hardened latch design

Technology scaling results in that, soft errors, due to radiation-induced single event double-upset (SEDU) that affects double nodes through charge sharing, become a prominent concern in nanoscale CMOS technology. Existing hardened schemes suffer from being not fully SEDU-immune, or perform with too...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters 2016-01, Vol.52 (2), p.139-141
Main Authors: Yan, Aibin, Liang, Huaguo, Huang, Zhengfeng, Jiang, Cuiyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Technology scaling results in that, soft errors, due to radiation-induced single event double-upset (SEDU) that affects double nodes through charge sharing, become a prominent concern in nanoscale CMOS technology. Existing hardened schemes suffer from being not fully SEDU-immune, or perform with too large cost penalties regarding propagation delay, silicon area, and power dissipation. A novel high-performance, low-cost, and fully SEDU-immune latch, referred to as HSMUF, is presented to tolerate SEDU when any arbitrary combination pair of nodes is affected by a particle striking. The latch mainly consists of a clock gating-based triple path DICE and a multiple-input Muller C-element. Simulation results demonstrate the SEDU-immunity and a 99.73% area–power–delay product saving for the HSMUF latch, compared with the SEDU fully immune DNCS-SEUT latch.
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2015.3020