Loading…
High-performance, low-cost, and highly reliable radiation hardened latch design
Technology scaling results in that, soft errors, due to radiation-induced single event double-upset (SEDU) that affects double nodes through charge sharing, become a prominent concern in nanoscale CMOS technology. Existing hardened schemes suffer from being not fully SEDU-immune, or perform with too...
Saved in:
Published in: | Electronics letters 2016-01, Vol.52 (2), p.139-141 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Technology scaling results in that, soft errors, due to radiation-induced single event double-upset (SEDU) that affects double nodes through charge sharing, become a prominent concern in nanoscale CMOS technology. Existing hardened schemes suffer from being not fully SEDU-immune, or perform with too large cost penalties regarding propagation delay, silicon area, and power dissipation. A novel high-performance, low-cost, and fully SEDU-immune latch, referred to as HSMUF, is presented to tolerate SEDU when any arbitrary combination pair of nodes is affected by a particle striking. The latch mainly consists of a clock gating-based triple path DICE and a multiple-input Muller C-element. Simulation results demonstrate the SEDU-immunity and a 99.73% area–power–delay product saving for the HSMUF latch, compared with the SEDU fully immune DNCS-SEUT latch. |
---|---|
ISSN: | 0013-5194 1350-911X 1350-911X |
DOI: | 10.1049/el.2015.3020 |