Loading…

Multi-standard high-throughput and low-power quasi-cyclic low density parity check decoder for worldwide interoperability for microwave access and wireless fidelity standards

This study presents a reconfigurable quasi-cyclic low density parity check (QC-LDPC) decoder for IEEE 802.16e worldwide interoperability for microwave access and IEEE 802.11n wireless fidelity communication standards. It supports multiple code-rates of 1/2, 2/3, 3/4, 5/6 and its architecture has bee...

Full description

Saved in:
Bibliographic Details
Published in:IET circuits, devices & systems devices & systems, 2016-03, Vol.10 (2), p.111-120
Main Authors: Kanchetla, Vijaya Kumar, Shrestha, Rahul, Paily, Roy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a reconfigurable quasi-cyclic low density parity check (QC-LDPC) decoder for IEEE 802.16e worldwide interoperability for microwave access and IEEE 802.11n wireless fidelity communication standards. It supports multiple code-rates of 1/2, 2/3, 3/4, 5/6 and its architecture has been designed based on column layered decoding technique to enhance the convergence speed. The authors have suggested a register file based approach to handle the shift property of the modified parity check matrix and a modified version of the matrix permutation method has been introduced to reduce the number of check nodes which handle multiple messages. In addition, parallel processing has been incorporated in the decoder architecture to attain higher achievable throughput. This QC-LDPC decoder is implemented in 90 nm CMOS process and is post-layout simulated. It can achieve a throughput of 796 Mbps for a code-rate of 5/6. With 0.9 V supply, it consumes 146 mW of total power at 149 MHz clock frequency.
ISSN:1751-858X
1751-8598
1751-8598
DOI:10.1049/iet-cds.2014.0347