Loading…
Multi-standard high-throughput and low-power quasi-cyclic low density parity check decoder for worldwide interoperability for microwave access and wireless fidelity standards
This study presents a reconfigurable quasi-cyclic low density parity check (QC-LDPC) decoder for IEEE 802.16e worldwide interoperability for microwave access and IEEE 802.11n wireless fidelity communication standards. It supports multiple code-rates of 1/2, 2/3, 3/4, 5/6 and its architecture has bee...
Saved in:
Published in: | IET circuits, devices & systems devices & systems, 2016-03, Vol.10 (2), p.111-120 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents a reconfigurable quasi-cyclic low density parity check (QC-LDPC) decoder for IEEE 802.16e worldwide interoperability for microwave access and IEEE 802.11n wireless fidelity communication standards. It supports multiple code-rates of 1/2, 2/3, 3/4, 5/6 and its architecture has been designed based on column layered decoding technique to enhance the convergence speed. The authors have suggested a register file based approach to handle the shift property of the modified parity check matrix and a modified version of the matrix permutation method has been introduced to reduce the number of check nodes which handle multiple messages. In addition, parallel processing has been incorporated in the decoder architecture to attain higher achievable throughput. This QC-LDPC decoder is implemented in 90 nm CMOS process and is post-layout simulated. It can achieve a throughput of 796 Mbps for a code-rate of 5/6. With 0.9 V supply, it consumes 146 mW of total power at 149 MHz clock frequency. |
---|---|
ISSN: | 1751-858X 1751-8598 1751-8598 |
DOI: | 10.1049/iet-cds.2014.0347 |