Loading…
Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method
This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and elec...
Saved in:
Published in: | IET generation, transmission & distribution transmission & distribution, 2014-05, Vol.8 (5), p.828-840 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3 |
container_end_page | 840 |
container_issue | 5 |
container_start_page | 828 |
container_title | IET generation, transmission & distribution |
container_volume | 8 |
creator | Dehghan, Shahab Kazemi, Ahad Amjady, Nima |
description | This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands. |
doi_str_mv | 10.1049/iet-gtd.2013.0427 |
format | article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_iet_gtd_2013_0427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GTD2BF00233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</originalsourceid><addsrcrecordid>eNqFkLtOxDAQRSMEEs8PoHNL4cVO7Dih47E8JBDNUkd2PFm82tiR7QBb8SF8EX9FwiJEgaCxZzT33tGcJDmkZEIJK48NRDyPepISmk0IS8VGskMFp7jIS775XRdiO9kNYUEI5zkTO8nrXb-MBju1gDqaJ0DeqT5EFL20oTUhGGcRvHRDN1bdUlpr7Bz1YXyNbZxvZRxGeC47pKE2n7r4CM6vkLQayX7ego2g0fsbrp0NQ7SxEbUQH53eT7YauQxw8PXvJQ-X09n5Nb69v7o5P73FdVoWGVYESqXSTBSciRqo5gxS2vAiVQDAOaeiKDQtBaN5wZtcC8UY40QppmReqmwvoevc2rsQPDRV500r_aqipBoJVgPBaiBYjQSrkeDgOVl7ns0SVv8bqqvZRXp2SUiaZYMZr82jbOF6b4fz_lx29Iv-ZjobU3_s6HSTfQCiP5im</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Dehghan, Shahab ; Kazemi, Ahad ; Amjady, Nima</creator><creatorcontrib>Dehghan, Shahab ; Kazemi, Ahad ; Amjady, Nima</creatorcontrib><description>This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands.</description><identifier>ISSN: 1751-8687</identifier><identifier>ISSN: 1751-8695</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/iet-gtd.2013.0427</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>augmented ε‐constraint method ; decision theory ; information gap decision theory ; integer programming ; Latin hypercube sampling based post optimisation procedure ; linear programming ; multiobjective optimisation problem ; multiobjective robust transmission expansion planning ; multiyear transmission expansion planning ; planning uncertainty ; power transmission economics ; power transmission planning ; sampling methods ; tractable mixed integer‐linear programming model ; uncertain capital cost</subject><ispartof>IET generation, transmission & distribution, 2014-05, Vol.8 (5), p.828-840</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2014 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</citedby><cites>FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-gtd.2013.0427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-gtd.2013.0427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2013.0427$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Dehghan, Shahab</creatorcontrib><creatorcontrib>Kazemi, Ahad</creatorcontrib><creatorcontrib>Amjady, Nima</creatorcontrib><title>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</title><title>IET generation, transmission & distribution</title><description>This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands.</description><subject>augmented ε‐constraint method</subject><subject>decision theory</subject><subject>information gap decision theory</subject><subject>integer programming</subject><subject>Latin hypercube sampling based post optimisation procedure</subject><subject>linear programming</subject><subject>multiobjective optimisation problem</subject><subject>multiobjective robust transmission expansion planning</subject><subject>multiyear transmission expansion planning</subject><subject>planning uncertainty</subject><subject>power transmission economics</subject><subject>power transmission planning</subject><subject>sampling methods</subject><subject>tractable mixed integer‐linear programming model</subject><subject>uncertain capital cost</subject><issn>1751-8687</issn><issn>1751-8695</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAQRSMEEs8PoHNL4cVO7Dih47E8JBDNUkd2PFm82tiR7QBb8SF8EX9FwiJEgaCxZzT33tGcJDmkZEIJK48NRDyPepISmk0IS8VGskMFp7jIS775XRdiO9kNYUEI5zkTO8nrXb-MBju1gDqaJ0DeqT5EFL20oTUhGGcRvHRDN1bdUlpr7Bz1YXyNbZxvZRxGeC47pKE2n7r4CM6vkLQayX7ego2g0fsbrp0NQ7SxEbUQH53eT7YauQxw8PXvJQ-X09n5Nb69v7o5P73FdVoWGVYESqXSTBSciRqo5gxS2vAiVQDAOaeiKDQtBaN5wZtcC8UY40QppmReqmwvoevc2rsQPDRV500r_aqipBoJVgPBaiBYjQSrkeDgOVl7ns0SVv8bqqvZRXp2SUiaZYMZr82jbOF6b4fz_lx29Iv-ZjobU3_s6HSTfQCiP5im</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Dehghan, Shahab</creator><creator>Kazemi, Ahad</creator><creator>Amjady, Nima</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201405</creationdate><title>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</title><author>Dehghan, Shahab ; Kazemi, Ahad ; Amjady, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>augmented ε‐constraint method</topic><topic>decision theory</topic><topic>information gap decision theory</topic><topic>integer programming</topic><topic>Latin hypercube sampling based post optimisation procedure</topic><topic>linear programming</topic><topic>multiobjective optimisation problem</topic><topic>multiobjective robust transmission expansion planning</topic><topic>multiyear transmission expansion planning</topic><topic>planning uncertainty</topic><topic>power transmission economics</topic><topic>power transmission planning</topic><topic>sampling methods</topic><topic>tractable mixed integer‐linear programming model</topic><topic>uncertain capital cost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, Shahab</creatorcontrib><creatorcontrib>Kazemi, Ahad</creatorcontrib><creatorcontrib>Amjady, Nima</creatorcontrib><collection>CrossRef</collection><jtitle>IET generation, transmission & distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dehghan, Shahab</au><au>Kazemi, Ahad</au><au>Amjady, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</atitle><jtitle>IET generation, transmission & distribution</jtitle><date>2014-05</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>828</spage><epage>840</epage><pages>828-840</pages><issn>1751-8687</issn><issn>1751-8695</issn><eissn>1751-8695</eissn><abstract>This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-gtd.2013.0427</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8687 |
ispartof | IET generation, transmission & distribution, 2014-05, Vol.8 (5), p.828-840 |
issn | 1751-8687 1751-8695 1751-8695 |
language | eng |
recordid | cdi_iet_journals_10_1049_iet_gtd_2013_0427 |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | augmented ε‐constraint method decision theory information gap decision theory integer programming Latin hypercube sampling based post optimisation procedure linear programming multiobjective optimisation problem multiobjective robust transmission expansion planning multiyear transmission expansion planning planning uncertainty power transmission economics power transmission planning sampling methods tractable mixed integer‐linear programming model uncertain capital cost |
title | Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20robust%20transmission%20expansion%20planning%20using%20information-gap%20decision%20theory%20and%20augmented%20%C9%9B-constraint%20method&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Dehghan,%20Shahab&rft.date=2014-05&rft.volume=8&rft.issue=5&rft.spage=828&rft.epage=840&rft.pages=828-840&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/iet-gtd.2013.0427&rft_dat=%3Cwiley_24P%3EGTD2BF00233%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |