Loading…

Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method

This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and elec...

Full description

Saved in:
Bibliographic Details
Published in:IET generation, transmission & distribution transmission & distribution, 2014-05, Vol.8 (5), p.828-840
Main Authors: Dehghan, Shahab, Kazemi, Ahad, Amjady, Nima
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3
cites cdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3
container_end_page 840
container_issue 5
container_start_page 828
container_title IET generation, transmission & distribution
container_volume 8
creator Dehghan, Shahab
Kazemi, Ahad
Amjady, Nima
description This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands.
doi_str_mv 10.1049/iet-gtd.2013.0427
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_iet_gtd_2013_0427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GTD2BF00233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</originalsourceid><addsrcrecordid>eNqFkLtOxDAQRSMEEs8PoHNL4cVO7Dih47E8JBDNUkd2PFm82tiR7QBb8SF8EX9FwiJEgaCxZzT33tGcJDmkZEIJK48NRDyPepISmk0IS8VGskMFp7jIS775XRdiO9kNYUEI5zkTO8nrXb-MBju1gDqaJ0DeqT5EFL20oTUhGGcRvHRDN1bdUlpr7Bz1YXyNbZxvZRxGeC47pKE2n7r4CM6vkLQayX7ego2g0fsbrp0NQ7SxEbUQH53eT7YauQxw8PXvJQ-X09n5Nb69v7o5P73FdVoWGVYESqXSTBSciRqo5gxS2vAiVQDAOaeiKDQtBaN5wZtcC8UY40QppmReqmwvoevc2rsQPDRV500r_aqipBoJVgPBaiBYjQSrkeDgOVl7ns0SVv8bqqvZRXp2SUiaZYMZr82jbOF6b4fz_lx29Iv-ZjobU3_s6HSTfQCiP5im</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Dehghan, Shahab ; Kazemi, Ahad ; Amjady, Nima</creator><creatorcontrib>Dehghan, Shahab ; Kazemi, Ahad ; Amjady, Nima</creatorcontrib><description>This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands.</description><identifier>ISSN: 1751-8687</identifier><identifier>ISSN: 1751-8695</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/iet-gtd.2013.0427</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>augmented ε‐constraint method ; decision theory ; information gap decision theory ; integer programming ; Latin hypercube sampling based post optimisation procedure ; linear programming ; multiobjective optimisation problem ; multiobjective robust transmission expansion planning ; multiyear transmission expansion planning ; planning uncertainty ; power transmission economics ; power transmission planning ; sampling methods ; tractable mixed integer‐linear programming model ; uncertain capital cost</subject><ispartof>IET generation, transmission &amp; distribution, 2014-05, Vol.8 (5), p.828-840</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2014 The Authors. IET Generation, Transmission &amp; Distribution published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</citedby><cites>FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-gtd.2013.0427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-gtd.2013.0427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2013.0427$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Dehghan, Shahab</creatorcontrib><creatorcontrib>Kazemi, Ahad</creatorcontrib><creatorcontrib>Amjady, Nima</creatorcontrib><title>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</title><title>IET generation, transmission &amp; distribution</title><description>This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands.</description><subject>augmented ε‐constraint method</subject><subject>decision theory</subject><subject>information gap decision theory</subject><subject>integer programming</subject><subject>Latin hypercube sampling based post optimisation procedure</subject><subject>linear programming</subject><subject>multiobjective optimisation problem</subject><subject>multiobjective robust transmission expansion planning</subject><subject>multiyear transmission expansion planning</subject><subject>planning uncertainty</subject><subject>power transmission economics</subject><subject>power transmission planning</subject><subject>sampling methods</subject><subject>tractable mixed integer‐linear programming model</subject><subject>uncertain capital cost</subject><issn>1751-8687</issn><issn>1751-8695</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAQRSMEEs8PoHNL4cVO7Dih47E8JBDNUkd2PFm82tiR7QBb8SF8EX9FwiJEgaCxZzT33tGcJDmkZEIJK48NRDyPepISmk0IS8VGskMFp7jIS775XRdiO9kNYUEI5zkTO8nrXb-MBju1gDqaJ0DeqT5EFL20oTUhGGcRvHRDN1bdUlpr7Bz1YXyNbZxvZRxGeC47pKE2n7r4CM6vkLQayX7ego2g0fsbrp0NQ7SxEbUQH53eT7YauQxw8PXvJQ-X09n5Nb69v7o5P73FdVoWGVYESqXSTBSciRqo5gxS2vAiVQDAOaeiKDQtBaN5wZtcC8UY40QppmReqmwvoevc2rsQPDRV500r_aqipBoJVgPBaiBYjQSrkeDgOVl7ns0SVv8bqqvZRXp2SUiaZYMZr82jbOF6b4fz_lx29Iv-ZjobU3_s6HSTfQCiP5im</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Dehghan, Shahab</creator><creator>Kazemi, Ahad</creator><creator>Amjady, Nima</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201405</creationdate><title>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</title><author>Dehghan, Shahab ; Kazemi, Ahad ; Amjady, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>augmented ε‐constraint method</topic><topic>decision theory</topic><topic>information gap decision theory</topic><topic>integer programming</topic><topic>Latin hypercube sampling based post optimisation procedure</topic><topic>linear programming</topic><topic>multiobjective optimisation problem</topic><topic>multiobjective robust transmission expansion planning</topic><topic>multiyear transmission expansion planning</topic><topic>planning uncertainty</topic><topic>power transmission economics</topic><topic>power transmission planning</topic><topic>sampling methods</topic><topic>tractable mixed integer‐linear programming model</topic><topic>uncertain capital cost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, Shahab</creatorcontrib><creatorcontrib>Kazemi, Ahad</creatorcontrib><creatorcontrib>Amjady, Nima</creatorcontrib><collection>CrossRef</collection><jtitle>IET generation, transmission &amp; distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dehghan, Shahab</au><au>Kazemi, Ahad</au><au>Amjady, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method</atitle><jtitle>IET generation, transmission &amp; distribution</jtitle><date>2014-05</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>828</spage><epage>840</epage><pages>828-840</pages><issn>1751-8687</issn><issn>1751-8695</issn><eissn>1751-8695</eissn><abstract>This study presents a novel tractable mixed-integer linear programming model for multiyear transmission expansion planning (TEP) problem coping with the uncertain capital costs and uncertain electricity demands using the information-gap decision theory (IGDT). As the uncertain capital costs and electricity demands compete to occupy the permissible uncertainty budget, the proposed IGDT-based TEP (IGDT-TEP) framework employs the augmented ɛ-constraint method to solve a multi-objective optimisation problem maximising the robust regions against the uncertain variables (i.e. capital costs and electricity demands) centred on their forecasted values. This framework enables the system's planner to control the immunisation level of the optimal expansion plan regarding the enforced planning uncertainties using a certain uncertainty budget. Also, a Latin hypercube sampling-based post-optimisation procedure is introduced to evaluate the robustness of an expansion plan obtained from the proposed IGDT-TEP framework. Simulation results demonstrate the effectiveness of the IGDT-TEP model to handle the uncertain nature of capital costs and electricity demands.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-gtd.2013.0427</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8687
ispartof IET generation, transmission & distribution, 2014-05, Vol.8 (5), p.828-840
issn 1751-8687
1751-8695
1751-8695
language eng
recordid cdi_iet_journals_10_1049_iet_gtd_2013_0427
source Open Access: Wiley-Blackwell Open Access Journals
subjects augmented ε‐constraint method
decision theory
information gap decision theory
integer programming
Latin hypercube sampling based post optimisation procedure
linear programming
multiobjective optimisation problem
multiobjective robust transmission expansion planning
multiyear transmission expansion planning
planning uncertainty
power transmission economics
power transmission planning
sampling methods
tractable mixed integer‐linear programming model
uncertain capital cost
title Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20robust%20transmission%20expansion%20planning%20using%20information-gap%20decision%20theory%20and%20augmented%20%C9%9B-constraint%20method&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Dehghan,%20Shahab&rft.date=2014-05&rft.volume=8&rft.issue=5&rft.spage=828&rft.epage=840&rft.pages=828-840&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/iet-gtd.2013.0427&rft_dat=%3Cwiley_24P%3EGTD2BF00233%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2983-b0e9bb2378547ce1d54e21f582beee5551788d19741685f6d7b44450bb4ba69b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true