Loading…

Measurement-based analysis of the dynamic performance of microgrids using system identification techniques

The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on mea...

Full description

Saved in:
Bibliographic Details
Published in:IET generation, transmission & distribution transmission & distribution, 2015-01, Vol.9 (1), p.90-103
Main Authors: Papadopoulos, Panagiotis N, Papadopoulos, Theofilos A, Crolla, Paul, Roscoe, Andrew J, Papagiannis, Grigoris K, Burt, Graeme M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763
cites cdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763
container_end_page 103
container_issue 1
container_start_page 90
container_title IET generation, transmission & distribution
container_volume 9
creator Papadopoulos, Panagiotis N
Papadopoulos, Theofilos A
Crolla, Paul
Roscoe, Andrew J
Papagiannis, Grigoris K
Burt, Graeme M
description The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.
doi_str_mv 10.1049/iet-gtd.2014.0555
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_iet_gtd_2014_0555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793246540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</originalsourceid><addsrcrecordid>eNqFkLtu2zAUQIWgAeIm_YBuHNtBLilfilS3NHUSAymyODNBU5cODT1cXgmF_j4UHBQdEnQiQZ7Dx8myz4IvBYfqW8Ah3w_1suACllxKeZYthJIi12UlP_yda3WRfSQ68ISUoBbZ4RdaGiO22A35zhLWzHa2mSgQ6z0bnpHVU2fb4NgRo-9jazuH81Zaiv0-hprYSKHbM5powJaFOh0VfHB2CH3HBnTPXfg9Il1l5942hJ9ex8vs6Xa9vbnPHx7vNjfXD7kDgCKHEnZaC73yXkIptAYQHioLWhRKgvboneaoOFYgtXSq2AmnlFRWW8tVubrMvpzOPcZ-vncwbSCHTWM77EcyQlWrAkoJPKHihKavEEX05hhDa-NkBDdzV5O6mtTVzF3N3DU530_On9Dg9H_B3G1_Fj9uOV-VRZK_nuQZO_RjTK3JbNbbmfrHOdY-sfkb7PsPewGKXJyP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793246540</pqid></control><display><type>article</type><title>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</title><source>Wiley Online Library Open Access</source><creator>Papadopoulos, Panagiotis N ; Papadopoulos, Theofilos A ; Crolla, Paul ; Roscoe, Andrew J ; Papagiannis, Grigoris K ; Burt, Graeme M</creator><creatorcontrib>Papadopoulos, Panagiotis N ; Papadopoulos, Theofilos A ; Crolla, Paul ; Roscoe, Andrew J ; Papagiannis, Grigoris K ; Burt, Graeme M</creatorcontrib><description>The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.</description><identifier>ISSN: 1751-8687</identifier><identifier>ISSN: 1751-8695</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/iet-gtd.2014.0555</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Distributed generation ; distributed generation unit ; distributed power generation ; Dynamic tests ; Dynamical systems ; Dynamics ; Eigenvalues ; eigenvalues and eigenfunctions ; Electric power grids ; inverter interface effect ; invertors ; laboratory microgrid system ; measurement‐based analysis ; Methodology ; microgrid dynamic performance analysis ; power system measurement ; power system parameter estimation ; Prony analysis ; rotating distributed generation ; smart grid technology ; smart power grids ; state‐space black‐box modelling technique ; system eigenvalues ; system identification techniques</subject><ispartof>IET generation, transmission &amp; distribution, 2015-01, Vol.9 (1), p.90-103</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2015 The Authors. IET Generation, Transmission &amp; Distribution published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</citedby><cites>FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-gtd.2014.0555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-gtd.2014.0555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2014.0555$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Papadopoulos, Panagiotis N</creatorcontrib><creatorcontrib>Papadopoulos, Theofilos A</creatorcontrib><creatorcontrib>Crolla, Paul</creatorcontrib><creatorcontrib>Roscoe, Andrew J</creatorcontrib><creatorcontrib>Papagiannis, Grigoris K</creatorcontrib><creatorcontrib>Burt, Graeme M</creatorcontrib><title>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</title><title>IET generation, transmission &amp; distribution</title><description>The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.</description><subject>Distributed generation</subject><subject>distributed generation unit</subject><subject>distributed power generation</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>eigenvalues and eigenfunctions</subject><subject>Electric power grids</subject><subject>inverter interface effect</subject><subject>invertors</subject><subject>laboratory microgrid system</subject><subject>measurement‐based analysis</subject><subject>Methodology</subject><subject>microgrid dynamic performance analysis</subject><subject>power system measurement</subject><subject>power system parameter estimation</subject><subject>Prony analysis</subject><subject>rotating distributed generation</subject><subject>smart grid technology</subject><subject>smart power grids</subject><subject>state‐space black‐box modelling technique</subject><subject>system eigenvalues</subject><subject>system identification techniques</subject><issn>1751-8687</issn><issn>1751-8695</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkLtu2zAUQIWgAeIm_YBuHNtBLilfilS3NHUSAymyODNBU5cODT1cXgmF_j4UHBQdEnQiQZ7Dx8myz4IvBYfqW8Ah3w_1suACllxKeZYthJIi12UlP_yda3WRfSQ68ISUoBbZ4RdaGiO22A35zhLWzHa2mSgQ6z0bnpHVU2fb4NgRo-9jazuH81Zaiv0-hprYSKHbM5powJaFOh0VfHB2CH3HBnTPXfg9Il1l5942hJ9ex8vs6Xa9vbnPHx7vNjfXD7kDgCKHEnZaC73yXkIptAYQHioLWhRKgvboneaoOFYgtXSq2AmnlFRWW8tVubrMvpzOPcZ-vncwbSCHTWM77EcyQlWrAkoJPKHihKavEEX05hhDa-NkBDdzV5O6mtTVzF3N3DU530_On9Dg9H_B3G1_Fj9uOV-VRZK_nuQZO_RjTK3JbNbbmfrHOdY-sfkb7PsPewGKXJyP</recordid><startdate>20150108</startdate><enddate>20150108</enddate><creator>Papadopoulos, Panagiotis N</creator><creator>Papadopoulos, Theofilos A</creator><creator>Crolla, Paul</creator><creator>Roscoe, Andrew J</creator><creator>Papagiannis, Grigoris K</creator><creator>Burt, Graeme M</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150108</creationdate><title>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</title><author>Papadopoulos, Panagiotis N ; Papadopoulos, Theofilos A ; Crolla, Paul ; Roscoe, Andrew J ; Papagiannis, Grigoris K ; Burt, Graeme M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Distributed generation</topic><topic>distributed generation unit</topic><topic>distributed power generation</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>eigenvalues and eigenfunctions</topic><topic>Electric power grids</topic><topic>inverter interface effect</topic><topic>invertors</topic><topic>laboratory microgrid system</topic><topic>measurement‐based analysis</topic><topic>Methodology</topic><topic>microgrid dynamic performance analysis</topic><topic>power system measurement</topic><topic>power system parameter estimation</topic><topic>Prony analysis</topic><topic>rotating distributed generation</topic><topic>smart grid technology</topic><topic>smart power grids</topic><topic>state‐space black‐box modelling technique</topic><topic>system eigenvalues</topic><topic>system identification techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, Panagiotis N</creatorcontrib><creatorcontrib>Papadopoulos, Theofilos A</creatorcontrib><creatorcontrib>Crolla, Paul</creatorcontrib><creatorcontrib>Roscoe, Andrew J</creatorcontrib><creatorcontrib>Papagiannis, Grigoris K</creatorcontrib><creatorcontrib>Burt, Graeme M</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IET generation, transmission &amp; distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Papadopoulos, Panagiotis N</au><au>Papadopoulos, Theofilos A</au><au>Crolla, Paul</au><au>Roscoe, Andrew J</au><au>Papagiannis, Grigoris K</au><au>Burt, Graeme M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</atitle><jtitle>IET generation, transmission &amp; distribution</jtitle><date>2015-01-08</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>90</spage><epage>103</epage><pages>90-103</pages><issn>1751-8687</issn><issn>1751-8695</issn><eissn>1751-8695</eissn><abstract>The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-gtd.2014.0555</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8687
ispartof IET generation, transmission & distribution, 2015-01, Vol.9 (1), p.90-103
issn 1751-8687
1751-8695
1751-8695
language eng
recordid cdi_iet_journals_10_1049_iet_gtd_2014_0555
source Wiley Online Library Open Access
subjects Distributed generation
distributed generation unit
distributed power generation
Dynamic tests
Dynamical systems
Dynamics
Eigenvalues
eigenvalues and eigenfunctions
Electric power grids
inverter interface effect
invertors
laboratory microgrid system
measurement‐based analysis
Methodology
microgrid dynamic performance analysis
power system measurement
power system parameter estimation
Prony analysis
rotating distributed generation
smart grid technology
smart power grids
state‐space black‐box modelling technique
system eigenvalues
system identification techniques
title Measurement-based analysis of the dynamic performance of microgrids using system identification techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-based%20analysis%20of%20the%20dynamic%20performance%20of%20microgrids%20using%20system%20identification%20techniques&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Papadopoulos,%20Panagiotis%20N&rft.date=2015-01-08&rft.volume=9&rft.issue=1&rft.spage=90&rft.epage=103&rft.pages=90-103&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/iet-gtd.2014.0555&rft_dat=%3Cproquest_24P%3E1793246540%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793246540&rft_id=info:pmid/&rfr_iscdi=true