Loading…
Measurement-based analysis of the dynamic performance of microgrids using system identification techniques
The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on mea...
Saved in:
Published in: | IET generation, transmission & distribution transmission & distribution, 2015-01, Vol.9 (1), p.90-103 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763 |
---|---|
cites | cdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763 |
container_end_page | 103 |
container_issue | 1 |
container_start_page | 90 |
container_title | IET generation, transmission & distribution |
container_volume | 9 |
creator | Papadopoulos, Panagiotis N Papadopoulos, Theofilos A Crolla, Paul Roscoe, Andrew J Papagiannis, Grigoris K Burt, Graeme M |
description | The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features. |
doi_str_mv | 10.1049/iet-gtd.2014.0555 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_iet_gtd_2014_0555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793246540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</originalsourceid><addsrcrecordid>eNqFkLtu2zAUQIWgAeIm_YBuHNtBLilfilS3NHUSAymyODNBU5cODT1cXgmF_j4UHBQdEnQiQZ7Dx8myz4IvBYfqW8Ah3w_1suACllxKeZYthJIi12UlP_yda3WRfSQ68ISUoBbZ4RdaGiO22A35zhLWzHa2mSgQ6z0bnpHVU2fb4NgRo-9jazuH81Zaiv0-hprYSKHbM5powJaFOh0VfHB2CH3HBnTPXfg9Il1l5942hJ9ex8vs6Xa9vbnPHx7vNjfXD7kDgCKHEnZaC73yXkIptAYQHioLWhRKgvboneaoOFYgtXSq2AmnlFRWW8tVubrMvpzOPcZ-vncwbSCHTWM77EcyQlWrAkoJPKHihKavEEX05hhDa-NkBDdzV5O6mtTVzF3N3DU530_On9Dg9H_B3G1_Fj9uOV-VRZK_nuQZO_RjTK3JbNbbmfrHOdY-sfkb7PsPewGKXJyP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793246540</pqid></control><display><type>article</type><title>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</title><source>Wiley Online Library Open Access</source><creator>Papadopoulos, Panagiotis N ; Papadopoulos, Theofilos A ; Crolla, Paul ; Roscoe, Andrew J ; Papagiannis, Grigoris K ; Burt, Graeme M</creator><creatorcontrib>Papadopoulos, Panagiotis N ; Papadopoulos, Theofilos A ; Crolla, Paul ; Roscoe, Andrew J ; Papagiannis, Grigoris K ; Burt, Graeme M</creatorcontrib><description>The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.</description><identifier>ISSN: 1751-8687</identifier><identifier>ISSN: 1751-8695</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/iet-gtd.2014.0555</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Distributed generation ; distributed generation unit ; distributed power generation ; Dynamic tests ; Dynamical systems ; Dynamics ; Eigenvalues ; eigenvalues and eigenfunctions ; Electric power grids ; inverter interface effect ; invertors ; laboratory microgrid system ; measurement‐based analysis ; Methodology ; microgrid dynamic performance analysis ; power system measurement ; power system parameter estimation ; Prony analysis ; rotating distributed generation ; smart grid technology ; smart power grids ; state‐space black‐box modelling technique ; system eigenvalues ; system identification techniques</subject><ispartof>IET generation, transmission & distribution, 2015-01, Vol.9 (1), p.90-103</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2015 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</citedby><cites>FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-gtd.2014.0555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-gtd.2014.0555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2014.0555$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Papadopoulos, Panagiotis N</creatorcontrib><creatorcontrib>Papadopoulos, Theofilos A</creatorcontrib><creatorcontrib>Crolla, Paul</creatorcontrib><creatorcontrib>Roscoe, Andrew J</creatorcontrib><creatorcontrib>Papagiannis, Grigoris K</creatorcontrib><creatorcontrib>Burt, Graeme M</creatorcontrib><title>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</title><title>IET generation, transmission & distribution</title><description>The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.</description><subject>Distributed generation</subject><subject>distributed generation unit</subject><subject>distributed power generation</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>eigenvalues and eigenfunctions</subject><subject>Electric power grids</subject><subject>inverter interface effect</subject><subject>invertors</subject><subject>laboratory microgrid system</subject><subject>measurement‐based analysis</subject><subject>Methodology</subject><subject>microgrid dynamic performance analysis</subject><subject>power system measurement</subject><subject>power system parameter estimation</subject><subject>Prony analysis</subject><subject>rotating distributed generation</subject><subject>smart grid technology</subject><subject>smart power grids</subject><subject>state‐space black‐box modelling technique</subject><subject>system eigenvalues</subject><subject>system identification techniques</subject><issn>1751-8687</issn><issn>1751-8695</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkLtu2zAUQIWgAeIm_YBuHNtBLilfilS3NHUSAymyODNBU5cODT1cXgmF_j4UHBQdEnQiQZ7Dx8myz4IvBYfqW8Ah3w_1suACllxKeZYthJIi12UlP_yda3WRfSQ68ISUoBbZ4RdaGiO22A35zhLWzHa2mSgQ6z0bnpHVU2fb4NgRo-9jazuH81Zaiv0-hprYSKHbM5powJaFOh0VfHB2CH3HBnTPXfg9Il1l5942hJ9ex8vs6Xa9vbnPHx7vNjfXD7kDgCKHEnZaC73yXkIptAYQHioLWhRKgvboneaoOFYgtXSq2AmnlFRWW8tVubrMvpzOPcZ-vncwbSCHTWM77EcyQlWrAkoJPKHihKavEEX05hhDa-NkBDdzV5O6mtTVzF3N3DU530_On9Dg9H_B3G1_Fj9uOV-VRZK_nuQZO_RjTK3JbNbbmfrHOdY-sfkb7PsPewGKXJyP</recordid><startdate>20150108</startdate><enddate>20150108</enddate><creator>Papadopoulos, Panagiotis N</creator><creator>Papadopoulos, Theofilos A</creator><creator>Crolla, Paul</creator><creator>Roscoe, Andrew J</creator><creator>Papagiannis, Grigoris K</creator><creator>Burt, Graeme M</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150108</creationdate><title>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</title><author>Papadopoulos, Panagiotis N ; Papadopoulos, Theofilos A ; Crolla, Paul ; Roscoe, Andrew J ; Papagiannis, Grigoris K ; Burt, Graeme M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Distributed generation</topic><topic>distributed generation unit</topic><topic>distributed power generation</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>eigenvalues and eigenfunctions</topic><topic>Electric power grids</topic><topic>inverter interface effect</topic><topic>invertors</topic><topic>laboratory microgrid system</topic><topic>measurement‐based analysis</topic><topic>Methodology</topic><topic>microgrid dynamic performance analysis</topic><topic>power system measurement</topic><topic>power system parameter estimation</topic><topic>Prony analysis</topic><topic>rotating distributed generation</topic><topic>smart grid technology</topic><topic>smart power grids</topic><topic>state‐space black‐box modelling technique</topic><topic>system eigenvalues</topic><topic>system identification techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, Panagiotis N</creatorcontrib><creatorcontrib>Papadopoulos, Theofilos A</creatorcontrib><creatorcontrib>Crolla, Paul</creatorcontrib><creatorcontrib>Roscoe, Andrew J</creatorcontrib><creatorcontrib>Papagiannis, Grigoris K</creatorcontrib><creatorcontrib>Burt, Graeme M</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IET generation, transmission & distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Papadopoulos, Panagiotis N</au><au>Papadopoulos, Theofilos A</au><au>Crolla, Paul</au><au>Roscoe, Andrew J</au><au>Papagiannis, Grigoris K</au><au>Burt, Graeme M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-based analysis of the dynamic performance of microgrids using system identification techniques</atitle><jtitle>IET generation, transmission & distribution</jtitle><date>2015-01-08</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>90</spage><epage>103</epage><pages>90-103</pages><issn>1751-8687</issn><issn>1751-8695</issn><eissn>1751-8695</eissn><abstract>The dynamic performance of microgrids is of crucial importance, because of the increased complexity introduced by the combined effect of inverter interface and rotating distributed generation. This study presents a methodology for the investigation of the dynamic behaviour of microgrids based on measurements using Prony analysis and state-space black-box modelling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyse the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-gtd.2014.0555</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8687 |
ispartof | IET generation, transmission & distribution, 2015-01, Vol.9 (1), p.90-103 |
issn | 1751-8687 1751-8695 1751-8695 |
language | eng |
recordid | cdi_iet_journals_10_1049_iet_gtd_2014_0555 |
source | Wiley Online Library Open Access |
subjects | Distributed generation distributed generation unit distributed power generation Dynamic tests Dynamical systems Dynamics Eigenvalues eigenvalues and eigenfunctions Electric power grids inverter interface effect invertors laboratory microgrid system measurement‐based analysis Methodology microgrid dynamic performance analysis power system measurement power system parameter estimation Prony analysis rotating distributed generation smart grid technology smart power grids state‐space black‐box modelling technique system eigenvalues system identification techniques |
title | Measurement-based analysis of the dynamic performance of microgrids using system identification techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-based%20analysis%20of%20the%20dynamic%20performance%20of%20microgrids%20using%20system%20identification%20techniques&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Papadopoulos,%20Panagiotis%20N&rft.date=2015-01-08&rft.volume=9&rft.issue=1&rft.spage=90&rft.epage=103&rft.pages=90-103&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/iet-gtd.2014.0555&rft_dat=%3Cproquest_24P%3E1793246540%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4442-464b88183ff546188441f49a48127548fefc80e70e94585c72b1c7757a8aa0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793246540&rft_id=info:pmid/&rfr_iscdi=true |