Loading…

Extended smoothing joint data association for multi-target tracking in cluttered environments

In heavily cluttered environments, it is difficult to estimate the uncertain motion of an unknown number of targets with low detection probabilities. In particular, for tracking multiple targets, standard multi-target data association algorithms such as joint integrated probabilistic data associatio...

Full description

Saved in:
Bibliographic Details
Published in:IET radar, sonar & navigation sonar & navigation, 2020-04, Vol.14 (4), p.564-571
Main Authors: Memon, Sufyan Ali, Kim, Myunggun, Shin, Minho, Daudpoto, Jawaid, Pathan, Dur Muhammad, Son, Hungsun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3777-3f77baba21d4be9cd09241450d100f92a97bf1b628960aa9ce7adc9e540e4e443
cites cdi_FETCH-LOGICAL-c3777-3f77baba21d4be9cd09241450d100f92a97bf1b628960aa9ce7adc9e540e4e443
container_end_page 571
container_issue 4
container_start_page 564
container_title IET radar, sonar & navigation
container_volume 14
creator Memon, Sufyan Ali
Kim, Myunggun
Shin, Minho
Daudpoto, Jawaid
Pathan, Dur Muhammad
Son, Hungsun
description In heavily cluttered environments, it is difficult to estimate the uncertain motion of an unknown number of targets with low detection probabilities. In particular, for tracking multiple targets, standard multi-target data association algorithms such as joint integrated probabilistic data association (JIPDA), face complexity and severely limited applicability due to a combinatorially increasing number of possible measurement-to-track associations. Smoothers refine the target estimates based on future scan information. However, in this complex surveillance scenario, existing smoothing algorithms often fail to track the true target trajectories. To overcome such difficulties, this study proposes a new smoothing joint measurement-to-track association algorithm called fixed-interval smoothing JIPDA for tracking extended target trajectories (FIsJIPDA). The algorithm employs two independent JIPDA filters: forward JIPDA (fJIPDA) and backward JIPDA (bJIPDA). fJIPDA tracks the target state forward in time and is computed after the smoothing is achieved. bJIPDA estimates the target state in the backward time sequence. The numerical simulation is performed in a heavily populated cluttered environment with low target-detection probabilities. The results show better target trajectory accuracy and false-track discrimination performance of FIsJIPDA compared with that of existing algorithms for tracking multiple extended targets.
doi_str_mv 10.1049/iet-rsn.2019.0075
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_iet_journals_10_1049_iet_rsn_2019_0075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSN2BF01337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3777-3f77baba21d4be9cd09241450d100f92a97bf1b628960aa9ce7adc9e540e4e443</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwAez8AynjxKlrdlCVh1SBxGOJLMeZFJfERrYL9O9JVMQSVnMXc-5oDiGnDCYMuDyzmLIQ3SQHJicAotwjIyZKls2EzPd_84wfkqMY1wBlOeVyRF4WXwldjTWNnffp1boVXXvrEq110lTH6I3VyXpHGx9ot2mTzZIOK0w0BW3eBsA6atpNShj6HnQfNnjXoUvxmBw0uo148jPH5Plq8TS_yZb317fzi2VmCiFEVjRCVLrSOat5hdLUIHPOeAk1A2hkrqWoGlZN85mcgtbSoNC1kVhyQI6cF2PCdr0m-BgDNuo92E6HrWKgBj-q96N6P2rwowY_PXO-Yz5ti9v_AfXweJdfXgErCtHD2Q4e1tZ-E1z_3h_HvgEQcn5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended smoothing joint data association for multi-target tracking in cluttered environments</title><source>Wiley Online Library Open Access</source><creator>Memon, Sufyan Ali ; Kim, Myunggun ; Shin, Minho ; Daudpoto, Jawaid ; Pathan, Dur Muhammad ; Son, Hungsun</creator><creatorcontrib>Memon, Sufyan Ali ; Kim, Myunggun ; Shin, Minho ; Daudpoto, Jawaid ; Pathan, Dur Muhammad ; Son, Hungsun</creatorcontrib><description>In heavily cluttered environments, it is difficult to estimate the uncertain motion of an unknown number of targets with low detection probabilities. In particular, for tracking multiple targets, standard multi-target data association algorithms such as joint integrated probabilistic data association (JIPDA), face complexity and severely limited applicability due to a combinatorially increasing number of possible measurement-to-track associations. Smoothers refine the target estimates based on future scan information. However, in this complex surveillance scenario, existing smoothing algorithms often fail to track the true target trajectories. To overcome such difficulties, this study proposes a new smoothing joint measurement-to-track association algorithm called fixed-interval smoothing JIPDA for tracking extended target trajectories (FIsJIPDA). The algorithm employs two independent JIPDA filters: forward JIPDA (fJIPDA) and backward JIPDA (bJIPDA). fJIPDA tracks the target state forward in time and is computed after the smoothing is achieved. bJIPDA estimates the target state in the backward time sequence. The numerical simulation is performed in a heavily populated cluttered environment with low target-detection probabilities. The results show better target trajectory accuracy and false-track discrimination performance of FIsJIPDA compared with that of existing algorithms for tracking multiple extended targets.</description><identifier>ISSN: 1751-8784</identifier><identifier>ISSN: 1751-8792</identifier><identifier>EISSN: 1751-8792</identifier><identifier>DOI: 10.1049/iet-rsn.2019.0075</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>clutter ; combinatorially increasing number ; complex surveillance scenario ; extended target trajectories ; face complexity ; false‐track discrimination performance ; filtering theory ; fixed‐interval smoothing JIPDA ; future scan information ; heavily cluttered environments ; heavily populated cluttered environment ; independent JIPDA filters ; low detection probabilities ; low target‐detection probabilities ; measurement‐to‐track associations ; multiple targets ; multitarget tracking ; probability ; radar tracking ; sensor fusion ; smoothing algorithms ; smoothing joint data association ; smoothing joint measurement‐to‐track association algorithm ; Special Issue: Innovative Radar Detection, Tracking and Classification for Small UAVs as an Emerging Class of Targets ; standard multitarget data association algorithms ; target state ; target tracking ; target trajectory accuracy ; tracking multiple extended targets ; uncertain motion</subject><ispartof>IET radar, sonar &amp; navigation, 2020-04, Vol.14 (4), p.564-571</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3777-3f77baba21d4be9cd09241450d100f92a97bf1b628960aa9ce7adc9e540e4e443</citedby><cites>FETCH-LOGICAL-c3777-3f77baba21d4be9cd09241450d100f92a97bf1b628960aa9ce7adc9e540e4e443</cites><orcidid>0000-0001-5592-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-rsn.2019.0075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-rsn.2019.0075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-rsn.2019.0075$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Memon, Sufyan Ali</creatorcontrib><creatorcontrib>Kim, Myunggun</creatorcontrib><creatorcontrib>Shin, Minho</creatorcontrib><creatorcontrib>Daudpoto, Jawaid</creatorcontrib><creatorcontrib>Pathan, Dur Muhammad</creatorcontrib><creatorcontrib>Son, Hungsun</creatorcontrib><title>Extended smoothing joint data association for multi-target tracking in cluttered environments</title><title>IET radar, sonar &amp; navigation</title><description>In heavily cluttered environments, it is difficult to estimate the uncertain motion of an unknown number of targets with low detection probabilities. In particular, for tracking multiple targets, standard multi-target data association algorithms such as joint integrated probabilistic data association (JIPDA), face complexity and severely limited applicability due to a combinatorially increasing number of possible measurement-to-track associations. Smoothers refine the target estimates based on future scan information. However, in this complex surveillance scenario, existing smoothing algorithms often fail to track the true target trajectories. To overcome such difficulties, this study proposes a new smoothing joint measurement-to-track association algorithm called fixed-interval smoothing JIPDA for tracking extended target trajectories (FIsJIPDA). The algorithm employs two independent JIPDA filters: forward JIPDA (fJIPDA) and backward JIPDA (bJIPDA). fJIPDA tracks the target state forward in time and is computed after the smoothing is achieved. bJIPDA estimates the target state in the backward time sequence. The numerical simulation is performed in a heavily populated cluttered environment with low target-detection probabilities. The results show better target trajectory accuracy and false-track discrimination performance of FIsJIPDA compared with that of existing algorithms for tracking multiple extended targets.</description><subject>clutter</subject><subject>combinatorially increasing number</subject><subject>complex surveillance scenario</subject><subject>extended target trajectories</subject><subject>face complexity</subject><subject>false‐track discrimination performance</subject><subject>filtering theory</subject><subject>fixed‐interval smoothing JIPDA</subject><subject>future scan information</subject><subject>heavily cluttered environments</subject><subject>heavily populated cluttered environment</subject><subject>independent JIPDA filters</subject><subject>low detection probabilities</subject><subject>low target‐detection probabilities</subject><subject>measurement‐to‐track associations</subject><subject>multiple targets</subject><subject>multitarget tracking</subject><subject>probability</subject><subject>radar tracking</subject><subject>sensor fusion</subject><subject>smoothing algorithms</subject><subject>smoothing joint data association</subject><subject>smoothing joint measurement‐to‐track association algorithm</subject><subject>Special Issue: Innovative Radar Detection, Tracking and Classification for Small UAVs as an Emerging Class of Targets</subject><subject>standard multitarget data association algorithms</subject><subject>target state</subject><subject>target tracking</subject><subject>target trajectory accuracy</subject><subject>tracking multiple extended targets</subject><subject>uncertain motion</subject><issn>1751-8784</issn><issn>1751-8792</issn><issn>1751-8792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwAez8AynjxKlrdlCVh1SBxGOJLMeZFJfERrYL9O9JVMQSVnMXc-5oDiGnDCYMuDyzmLIQ3SQHJicAotwjIyZKls2EzPd_84wfkqMY1wBlOeVyRF4WXwldjTWNnffp1boVXXvrEq110lTH6I3VyXpHGx9ot2mTzZIOK0w0BW3eBsA6atpNShj6HnQfNnjXoUvxmBw0uo148jPH5Plq8TS_yZb317fzi2VmCiFEVjRCVLrSOat5hdLUIHPOeAk1A2hkrqWoGlZN85mcgtbSoNC1kVhyQI6cF2PCdr0m-BgDNuo92E6HrWKgBj-q96N6P2rwowY_PXO-Yz5ti9v_AfXweJdfXgErCtHD2Q4e1tZ-E1z_3h_HvgEQcn5Q</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Memon, Sufyan Ali</creator><creator>Kim, Myunggun</creator><creator>Shin, Minho</creator><creator>Daudpoto, Jawaid</creator><creator>Pathan, Dur Muhammad</creator><creator>Son, Hungsun</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5592-9990</orcidid></search><sort><creationdate>202004</creationdate><title>Extended smoothing joint data association for multi-target tracking in cluttered environments</title><author>Memon, Sufyan Ali ; Kim, Myunggun ; Shin, Minho ; Daudpoto, Jawaid ; Pathan, Dur Muhammad ; Son, Hungsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3777-3f77baba21d4be9cd09241450d100f92a97bf1b628960aa9ce7adc9e540e4e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>clutter</topic><topic>combinatorially increasing number</topic><topic>complex surveillance scenario</topic><topic>extended target trajectories</topic><topic>face complexity</topic><topic>false‐track discrimination performance</topic><topic>filtering theory</topic><topic>fixed‐interval smoothing JIPDA</topic><topic>future scan information</topic><topic>heavily cluttered environments</topic><topic>heavily populated cluttered environment</topic><topic>independent JIPDA filters</topic><topic>low detection probabilities</topic><topic>low target‐detection probabilities</topic><topic>measurement‐to‐track associations</topic><topic>multiple targets</topic><topic>multitarget tracking</topic><topic>probability</topic><topic>radar tracking</topic><topic>sensor fusion</topic><topic>smoothing algorithms</topic><topic>smoothing joint data association</topic><topic>smoothing joint measurement‐to‐track association algorithm</topic><topic>Special Issue: Innovative Radar Detection, Tracking and Classification for Small UAVs as an Emerging Class of Targets</topic><topic>standard multitarget data association algorithms</topic><topic>target state</topic><topic>target tracking</topic><topic>target trajectory accuracy</topic><topic>tracking multiple extended targets</topic><topic>uncertain motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Memon, Sufyan Ali</creatorcontrib><creatorcontrib>Kim, Myunggun</creatorcontrib><creatorcontrib>Shin, Minho</creatorcontrib><creatorcontrib>Daudpoto, Jawaid</creatorcontrib><creatorcontrib>Pathan, Dur Muhammad</creatorcontrib><creatorcontrib>Son, Hungsun</creatorcontrib><collection>CrossRef</collection><jtitle>IET radar, sonar &amp; navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Memon, Sufyan Ali</au><au>Kim, Myunggun</au><au>Shin, Minho</au><au>Daudpoto, Jawaid</au><au>Pathan, Dur Muhammad</au><au>Son, Hungsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended smoothing joint data association for multi-target tracking in cluttered environments</atitle><jtitle>IET radar, sonar &amp; navigation</jtitle><date>2020-04</date><risdate>2020</risdate><volume>14</volume><issue>4</issue><spage>564</spage><epage>571</epage><pages>564-571</pages><issn>1751-8784</issn><issn>1751-8792</issn><eissn>1751-8792</eissn><abstract>In heavily cluttered environments, it is difficult to estimate the uncertain motion of an unknown number of targets with low detection probabilities. In particular, for tracking multiple targets, standard multi-target data association algorithms such as joint integrated probabilistic data association (JIPDA), face complexity and severely limited applicability due to a combinatorially increasing number of possible measurement-to-track associations. Smoothers refine the target estimates based on future scan information. However, in this complex surveillance scenario, existing smoothing algorithms often fail to track the true target trajectories. To overcome such difficulties, this study proposes a new smoothing joint measurement-to-track association algorithm called fixed-interval smoothing JIPDA for tracking extended target trajectories (FIsJIPDA). The algorithm employs two independent JIPDA filters: forward JIPDA (fJIPDA) and backward JIPDA (bJIPDA). fJIPDA tracks the target state forward in time and is computed after the smoothing is achieved. bJIPDA estimates the target state in the backward time sequence. The numerical simulation is performed in a heavily populated cluttered environment with low target-detection probabilities. The results show better target trajectory accuracy and false-track discrimination performance of FIsJIPDA compared with that of existing algorithms for tracking multiple extended targets.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-rsn.2019.0075</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5592-9990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8784
ispartof IET radar, sonar & navigation, 2020-04, Vol.14 (4), p.564-571
issn 1751-8784
1751-8792
1751-8792
language eng
recordid cdi_iet_journals_10_1049_iet_rsn_2019_0075
source Wiley Online Library Open Access
subjects clutter
combinatorially increasing number
complex surveillance scenario
extended target trajectories
face complexity
false‐track discrimination performance
filtering theory
fixed‐interval smoothing JIPDA
future scan information
heavily cluttered environments
heavily populated cluttered environment
independent JIPDA filters
low detection probabilities
low target‐detection probabilities
measurement‐to‐track associations
multiple targets
multitarget tracking
probability
radar tracking
sensor fusion
smoothing algorithms
smoothing joint data association
smoothing joint measurement‐to‐track association algorithm
Special Issue: Innovative Radar Detection, Tracking and Classification for Small UAVs as an Emerging Class of Targets
standard multitarget data association algorithms
target state
target tracking
target trajectory accuracy
tracking multiple extended targets
uncertain motion
title Extended smoothing joint data association for multi-target tracking in cluttered environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20smoothing%20joint%20data%20association%20for%20multi-target%20tracking%20in%20cluttered%20environments&rft.jtitle=IET%20radar,%20sonar%20&%20navigation&rft.au=Memon,%20Sufyan%20Ali&rft.date=2020-04&rft.volume=14&rft.issue=4&rft.spage=564&rft.epage=571&rft.pages=564-571&rft.issn=1751-8784&rft.eissn=1751-8792&rft_id=info:doi/10.1049/iet-rsn.2019.0075&rft_dat=%3Cwiley_24P%3ERSN2BF01337%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3777-3f77baba21d4be9cd09241450d100f92a97bf1b628960aa9ce7adc9e540e4e443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true