Loading…

Mainlobe interference cancellation based on PCA + ECA in passive bistatic radar

The mainlobe interference is a noticeable issue in the passive bistatic radar. As the direction of arrival (DOA) of the interference is close to the DOA of the target echo, the interference hardly be cancelled by the adaptive spatial filtering. After clutter cancellation, the authors assume the main...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (20), p.6971-6974
Main Authors: Gao, Bo, Guo, Shuai, Wang, Jue, Wang, Jun, Lou, Baofang, Yan, Yifei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2240-18310ce5edbae6cd5ccbab5ce017ffa8845c5dcb8f1c5ddda988ab3b38b356403
container_end_page 6974
container_issue 20
container_start_page 6971
container_title Journal of engineering (Stevenage, England)
container_volume 2019
creator Gao, Bo
Guo, Shuai
Wang, Jue
Wang, Jun
Lou, Baofang
Yan, Yifei
description The mainlobe interference is a noticeable issue in the passive bistatic radar. As the direction of arrival (DOA) of the interference is close to the DOA of the target echo, the interference hardly be cancelled by the adaptive spatial filtering. After clutter cancellation, the authors assume the mainlobe interference is the principal component of the array element signal. This study proposes the method based on the principal component analysis (PCA) and the extensive cancellation algorithm (ECA) to cancel the mainlobe interference in the echoes. The PCA is applied to extract the interference component from the array element signals, and the ECA is applied to cancel the interference with the extracted interference component as the reference. Finally, the simulation result proves the feasibility of the method proposed by this paper.
doi_str_mv 10.1049/joe.2019.0585
format article
fullrecord <record><control><sourceid>wiley_iet_j</sourceid><recordid>TN_cdi_iet_journals_10_1049_joe_2019_0585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e40309eee7174d59b6b24388c583d69a</doaj_id><sourcerecordid>TJE2BF02490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2240-18310ce5edbae6cd5ccbab5ce017ffa8845c5dcb8f1c5ddda988ab3b38b356403</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFSP3vcqsnWySbbZYy2tHygK1nOYJLOSsu5KUhVvXv2b_hJTK-JFD8kM4Zk3w5NlBwxGDER9vOxpVAKrRyCV3MoGJUhWcA5y-1e_m-3HuAQAxkUJgg2y2yv0Xdsbyn23otBQoM5SbjHdbYsr33e5wUguT83NdPLx9n6Uzmw6SQP5I8bonyk3Pq4Sa_OADsNettNgG2n_uw6zu_lsMT0rLq9Pz6eTy8KWpYCCKc7AkiRnkCrrpLUGjbQEbNw0qJSQVjprVMNSdQ5rpdBww5XhshLAh9n5Jtf1uNSPwT9geNU9ev310Id7jSFt1ZKmhENNRGM2Fk7WpjKl4EpZqbirakxZxSbLhj7GQM1PHgO9FqyTYL0WrNeCE19t-Bff0uv_sF5czMqTOZSiXi99uBn0tErYU-iSoj8--QTZgI2S</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mainlobe interference cancellation based on PCA + ECA in passive bistatic radar</title><source>IET Digital Library</source><source>Wiley Online Library Open Access</source><creator>Gao, Bo ; Guo, Shuai ; Wang, Jue ; Wang, Jun ; Lou, Baofang ; Yan, Yifei</creator><creatorcontrib>Gao, Bo ; Guo, Shuai ; Wang, Jue ; Wang, Jun ; Lou, Baofang ; Yan, Yifei</creatorcontrib><description>The mainlobe interference is a noticeable issue in the passive bistatic radar. As the direction of arrival (DOA) of the interference is close to the DOA of the target echo, the interference hardly be cancelled by the adaptive spatial filtering. After clutter cancellation, the authors assume the mainlobe interference is the principal component of the array element signal. This study proposes the method based on the principal component analysis (PCA) and the extensive cancellation algorithm (ECA) to cancel the mainlobe interference in the echoes. The PCA is applied to extract the interference component from the array element signals, and the ECA is applied to cancel the interference with the extracted interference component as the reference. Finally, the simulation result proves the feasibility of the method proposed by this paper.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2019.0585</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>adaptive filters ; array element signal ; array signal processing ; clutter cancellation ; direction-of-arrival estimation ; extensive cancellation algorithm ; extracted interference component ; IET International Radar Conference (IRC 2018) ; interference suppression ; mainlobe interference cancellation ; passive bistatic radar ; passive radar ; PCA‐ECA ; principal component analysis ; radar clutter ; radar interference ; radar signal processing ; signal denoising ; spatial filters</subject><ispartof>Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (20), p.6971-6974</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2240-18310ce5edbae6cd5ccbab5ce017ffa8845c5dcb8f1c5ddda988ab3b38b356403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2019.0585$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2019.0585$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Gao, Bo</creatorcontrib><creatorcontrib>Guo, Shuai</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Lou, Baofang</creatorcontrib><creatorcontrib>Yan, Yifei</creatorcontrib><title>Mainlobe interference cancellation based on PCA + ECA in passive bistatic radar</title><title>Journal of engineering (Stevenage, England)</title><description>The mainlobe interference is a noticeable issue in the passive bistatic radar. As the direction of arrival (DOA) of the interference is close to the DOA of the target echo, the interference hardly be cancelled by the adaptive spatial filtering. After clutter cancellation, the authors assume the mainlobe interference is the principal component of the array element signal. This study proposes the method based on the principal component analysis (PCA) and the extensive cancellation algorithm (ECA) to cancel the mainlobe interference in the echoes. The PCA is applied to extract the interference component from the array element signals, and the ECA is applied to cancel the interference with the extracted interference component as the reference. Finally, the simulation result proves the feasibility of the method proposed by this paper.</description><subject>adaptive filters</subject><subject>array element signal</subject><subject>array signal processing</subject><subject>clutter cancellation</subject><subject>direction-of-arrival estimation</subject><subject>extensive cancellation algorithm</subject><subject>extracted interference component</subject><subject>IET International Radar Conference (IRC 2018)</subject><subject>interference suppression</subject><subject>mainlobe interference cancellation</subject><subject>passive bistatic radar</subject><subject>passive radar</subject><subject>PCA‐ECA</subject><subject>principal component analysis</subject><subject>radar clutter</subject><subject>radar interference</subject><subject>radar signal processing</subject><subject>signal denoising</subject><subject>spatial filters</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsFSP3vcqsnWySbbZYy2tHygK1nOYJLOSsu5KUhVvXv2b_hJTK-JFD8kM4Zk3w5NlBwxGDER9vOxpVAKrRyCV3MoGJUhWcA5y-1e_m-3HuAQAxkUJgg2y2yv0Xdsbyn23otBQoM5SbjHdbYsr33e5wUguT83NdPLx9n6Uzmw6SQP5I8bonyk3Pq4Sa_OADsNettNgG2n_uw6zu_lsMT0rLq9Pz6eTy8KWpYCCKc7AkiRnkCrrpLUGjbQEbNw0qJSQVjprVMNSdQ5rpdBww5XhshLAh9n5Jtf1uNSPwT9geNU9ev310Id7jSFt1ZKmhENNRGM2Fk7WpjKl4EpZqbirakxZxSbLhj7GQM1PHgO9FqyTYL0WrNeCE19t-Bff0uv_sF5czMqTOZSiXi99uBn0tErYU-iSoj8--QTZgI2S</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Gao, Bo</creator><creator>Guo, Shuai</creator><creator>Wang, Jue</creator><creator>Wang, Jun</creator><creator>Lou, Baofang</creator><creator>Yan, Yifei</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>IDLOA</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201910</creationdate><title>Mainlobe interference cancellation based on PCA + ECA in passive bistatic radar</title><author>Gao, Bo ; Guo, Shuai ; Wang, Jue ; Wang, Jun ; Lou, Baofang ; Yan, Yifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2240-18310ce5edbae6cd5ccbab5ce017ffa8845c5dcb8f1c5ddda988ab3b38b356403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adaptive filters</topic><topic>array element signal</topic><topic>array signal processing</topic><topic>clutter cancellation</topic><topic>direction-of-arrival estimation</topic><topic>extensive cancellation algorithm</topic><topic>extracted interference component</topic><topic>IET International Radar Conference (IRC 2018)</topic><topic>interference suppression</topic><topic>mainlobe interference cancellation</topic><topic>passive bistatic radar</topic><topic>passive radar</topic><topic>PCA‐ECA</topic><topic>principal component analysis</topic><topic>radar clutter</topic><topic>radar interference</topic><topic>radar signal processing</topic><topic>signal denoising</topic><topic>spatial filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Bo</creatorcontrib><creatorcontrib>Guo, Shuai</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Lou, Baofang</creatorcontrib><creatorcontrib>Yan, Yifei</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Bo</au><au>Guo, Shuai</au><au>Wang, Jue</au><au>Wang, Jun</au><au>Lou, Baofang</au><au>Yan, Yifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mainlobe interference cancellation based on PCA + ECA in passive bistatic radar</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>2019</volume><issue>20</issue><spage>6971</spage><epage>6974</epage><pages>6971-6974</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>The mainlobe interference is a noticeable issue in the passive bistatic radar. As the direction of arrival (DOA) of the interference is close to the DOA of the target echo, the interference hardly be cancelled by the adaptive spatial filtering. After clutter cancellation, the authors assume the mainlobe interference is the principal component of the array element signal. This study proposes the method based on the principal component analysis (PCA) and the extensive cancellation algorithm (ECA) to cancel the mainlobe interference in the echoes. The PCA is applied to extract the interference component from the array element signals, and the ECA is applied to cancel the interference with the extracted interference component as the reference. Finally, the simulation result proves the feasibility of the method proposed by this paper.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2019.0585</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-3305
ispartof Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (20), p.6971-6974
issn 2051-3305
2051-3305
language eng
recordid cdi_iet_journals_10_1049_joe_2019_0585
source IET Digital Library; Wiley Online Library Open Access
subjects adaptive filters
array element signal
array signal processing
clutter cancellation
direction-of-arrival estimation
extensive cancellation algorithm
extracted interference component
IET International Radar Conference (IRC 2018)
interference suppression
mainlobe interference cancellation
passive bistatic radar
passive radar
PCA‐ECA
principal component analysis
radar clutter
radar interference
radar signal processing
signal denoising
spatial filters
title Mainlobe interference cancellation based on PCA + ECA in passive bistatic radar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_iet_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mainlobe%20interference%20cancellation%20based%20on%20PCA%E2%80%89+%E2%80%89ECA%20in%20passive%20bistatic%20radar&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Gao,%20Bo&rft.date=2019-10&rft.volume=2019&rft.issue=20&rft.spage=6971&rft.epage=6974&rft.pages=6971-6974&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2019.0585&rft_dat=%3Cwiley_iet_j%3ETJE2BF02490%3C/wiley_iet_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2240-18310ce5edbae6cd5ccbab5ce017ffa8845c5dcb8f1c5ddda988ab3b38b356403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true