Loading…

Breath biomarkers for detection of human liver diseases: preliminary study

Chronic liver disease is initially occult, has multiple aetiologies, involves complex diagnostic questions, and requires follow-up because progression is likely. Blood tests and biopsies are generally used, but have disadvantages. We have developed a new test for liver disease based on abnormal conc...

Full description

Saved in:
Bibliographic Details
Published in:Biomarkers 2002, Vol.7 (2), p.174-187
Main Authors: Sehnert, Shelley S., Jiang, Long, Burdick, James F., Risby, Terence H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chronic liver disease is initially occult, has multiple aetiologies, involves complex diagnostic questions, and requires follow-up because progression is likely. Blood tests and biopsies are generally used, but have disadvantages. We have developed a new test for liver disease based on abnormal concentrations of metabolic products detected in exhaled breath. This test can be used, in conjunction with other clinically accepted diagnostic protocols, to detect and classify chronic liver diseases. Samples of breath collected from spontaneously breathing human subjects (86 patients presenting with 13 liver diseases and 109 subjects with normal liver function) were concentrated cryogenically and analysed by wide-bore capillary gas chromatography using various detectors. The concentrations of various molecules in exhaled breath were examined for potential use as biomarkers of liver function. Subjects with chronic liver diseases could be differentiated from those with normal liver function by comparing levels of breath carbonyl sulphide, carbon disulphide and isoprene; these differences were confirmed and correlated by comparing the levels with standard clinical blood markers of liver damage. The presence of chronic liver failure can thus be detected with sensitivity and specificity by quantifying sulphur-containing compounds arising from the abnormal metabolism associated with liver disease. The breath test we have developed appears to distinguish between hepatocellular and biliary tract aetiologies, and allows staging for severity. This approach may provide the clinician with a simple, non-invasive technique for use in the screening of large populations and follow-up for patients with chronic liver disease.
ISSN:1354-750X
1366-5804
DOI:10.1080/13547500110118184