Loading…

EC-coupling in normal and failing hearts

Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known,...

Full description

Saved in:
Bibliographic Details
Published in:International journal of food sciences and nutrition 2005-04, Vol.39 (1-2), p.13-23
Main Authors: Birkeland, Jon Arne, Sejersted, Ole M., Taraldsen, Tore, Sjaastad, Ivar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3
cites cdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3
container_end_page 23
container_issue 1-2
container_start_page 13
container_title International journal of food sciences and nutrition
container_volume 39
creator Birkeland, Jon Arne
Sejersted, Ole M.
Taraldsen, Tore
Sjaastad, Ivar
description Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models.
doi_str_mv 10.1080/14017430410004632
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_informahealthcare_journals_10_1080_14017430410004632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68478994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMotlYfwI3MStyMJs2dZIJupNQfKLjRdcjMJHZKJqnJDNK3N7UFEcFVLuF8H_cehM4Jvia4xDcEMOFAMRCMMTA6PUBjAqzIKfDyEI2xYDTnULIROolxlSBScH6MRoRhwQGLMbqaz_LaD2vbuvesdZnzoVM2U67JjGq_f5dahT6eoiOjbNRn-3eC3h7mr7OnfPHy-Dy7X-Q1AO_zpmwIZaIEM1VFJTTQwggocM1KowUmmqiKYABNoSpwUxsjpiaNXBTEMKPpBF3uetfBfww69rJrY62tVU77IUpWptuEgASSHVgHH2PQRq5D26mwkQTLrR75R0_KXOzLh6rTzU9i7yMBdzugdWZr4tMH28hebawPJihXt1HS__pvf8WTOtsvaxW0XPkhuCTun-2-AKrrgtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68478994</pqid></control><display><type>article</type><title>EC-coupling in normal and failing hearts</title><source>Taylor and Francis Science and Technology Collection</source><source>SPORTDiscus</source><creator>Birkeland, Jon Arne ; Sejersted, Ole M. ; Taraldsen, Tore ; Sjaastad, Ivar</creator><creatorcontrib>Birkeland, Jon Arne ; Sejersted, Ole M. ; Taraldsen, Tore ; Sjaastad, Ivar</creatorcontrib><description>Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models.</description><identifier>ISSN: 0963-7486</identifier><identifier>ISSN: 1401-7431</identifier><identifier>EISSN: 1465-3478</identifier><identifier>EISSN: 1651-2006</identifier><identifier>DOI: 10.1080/14017430410004632</identifier><identifier>PMID: 16097409</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>Action Potentials ; Animals ; Calcium Signaling ; Calcium-Transporting ATPases - metabolism ; Electrophysiology ; excitation-contraction coupling ; Female ; Heart failure ; Heart Failure - etiology ; Heart Failure - physiopathology ; Humans ; Male ; Myocardial Contraction - physiology ; myocardial failure ; Myocytes, Cardiac - cytology ; Sarcoplasmic Reticulum - physiology ; Sensitivity and Specificity ; Sodium-Calcium Exchanger - metabolism ; Ventricular Dysfunction, Left - etiology ; Ventricular Dysfunction, Left - physiopathology</subject><ispartof>International journal of food sciences and nutrition, 2005-04, Vol.39 (1-2), p.13-23</ispartof><rights>2005 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</citedby><cites>FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16097409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birkeland, Jon Arne</creatorcontrib><creatorcontrib>Sejersted, Ole M.</creatorcontrib><creatorcontrib>Taraldsen, Tore</creatorcontrib><creatorcontrib>Sjaastad, Ivar</creatorcontrib><title>EC-coupling in normal and failing hearts</title><title>International journal of food sciences and nutrition</title><addtitle>Scand Cardiovasc J</addtitle><description>Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Calcium Signaling</subject><subject>Calcium-Transporting ATPases - metabolism</subject><subject>Electrophysiology</subject><subject>excitation-contraction coupling</subject><subject>Female</subject><subject>Heart failure</subject><subject>Heart Failure - etiology</subject><subject>Heart Failure - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Myocardial Contraction - physiology</subject><subject>myocardial failure</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Sarcoplasmic Reticulum - physiology</subject><subject>Sensitivity and Specificity</subject><subject>Sodium-Calcium Exchanger - metabolism</subject><subject>Ventricular Dysfunction, Left - etiology</subject><subject>Ventricular Dysfunction, Left - physiopathology</subject><issn>0963-7486</issn><issn>1401-7431</issn><issn>1465-3478</issn><issn>1651-2006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMotlYfwI3MStyMJs2dZIJupNQfKLjRdcjMJHZKJqnJDNK3N7UFEcFVLuF8H_cehM4Jvia4xDcEMOFAMRCMMTA6PUBjAqzIKfDyEI2xYDTnULIROolxlSBScH6MRoRhwQGLMbqaz_LaD2vbuvesdZnzoVM2U67JjGq_f5dahT6eoiOjbNRn-3eC3h7mr7OnfPHy-Dy7X-Q1AO_zpmwIZaIEM1VFJTTQwggocM1KowUmmqiKYABNoSpwUxsjpiaNXBTEMKPpBF3uetfBfww69rJrY62tVU77IUpWptuEgASSHVgHH2PQRq5D26mwkQTLrR75R0_KXOzLh6rTzU9i7yMBdzugdWZr4tMH28hebawPJihXt1HS__pvf8WTOtsvaxW0XPkhuCTun-2-AKrrgtI</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Birkeland, Jon Arne</creator><creator>Sejersted, Ole M.</creator><creator>Taraldsen, Tore</creator><creator>Sjaastad, Ivar</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050401</creationdate><title>EC-coupling in normal and failing hearts</title><author>Birkeland, Jon Arne ; Sejersted, Ole M. ; Taraldsen, Tore ; Sjaastad, Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Calcium Signaling</topic><topic>Calcium-Transporting ATPases - metabolism</topic><topic>Electrophysiology</topic><topic>excitation-contraction coupling</topic><topic>Female</topic><topic>Heart failure</topic><topic>Heart Failure - etiology</topic><topic>Heart Failure - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Myocardial Contraction - physiology</topic><topic>myocardial failure</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Sarcoplasmic Reticulum - physiology</topic><topic>Sensitivity and Specificity</topic><topic>Sodium-Calcium Exchanger - metabolism</topic><topic>Ventricular Dysfunction, Left - etiology</topic><topic>Ventricular Dysfunction, Left - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkeland, Jon Arne</creatorcontrib><creatorcontrib>Sejersted, Ole M.</creatorcontrib><creatorcontrib>Taraldsen, Tore</creatorcontrib><creatorcontrib>Sjaastad, Ivar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of food sciences and nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkeland, Jon Arne</au><au>Sejersted, Ole M.</au><au>Taraldsen, Tore</au><au>Sjaastad, Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EC-coupling in normal and failing hearts</atitle><jtitle>International journal of food sciences and nutrition</jtitle><addtitle>Scand Cardiovasc J</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>39</volume><issue>1-2</issue><spage>13</spage><epage>23</epage><pages>13-23</pages><issn>0963-7486</issn><issn>1401-7431</issn><eissn>1465-3478</eissn><eissn>1651-2006</eissn><abstract>Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>16097409</pmid><doi>10.1080/14017430410004632</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-7486
ispartof International journal of food sciences and nutrition, 2005-04, Vol.39 (1-2), p.13-23
issn 0963-7486
1401-7431
1465-3478
1651-2006
language eng
recordid cdi_informahealthcare_journals_10_1080_14017430410004632
source Taylor and Francis Science and Technology Collection; SPORTDiscus
subjects Action Potentials
Animals
Calcium Signaling
Calcium-Transporting ATPases - metabolism
Electrophysiology
excitation-contraction coupling
Female
Heart failure
Heart Failure - etiology
Heart Failure - physiopathology
Humans
Male
Myocardial Contraction - physiology
myocardial failure
Myocytes, Cardiac - cytology
Sarcoplasmic Reticulum - physiology
Sensitivity and Specificity
Sodium-Calcium Exchanger - metabolism
Ventricular Dysfunction, Left - etiology
Ventricular Dysfunction, Left - physiopathology
title EC-coupling in normal and failing hearts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EC-coupling%20in%20normal%20and%20failing%20hearts&rft.jtitle=International%20journal%20of%20food%20sciences%20and%20nutrition&rft.au=Birkeland,%20Jon%20Arne&rft.date=2005-04-01&rft.volume=39&rft.issue=1-2&rft.spage=13&rft.epage=23&rft.pages=13-23&rft.issn=0963-7486&rft.eissn=1465-3478&rft_id=info:doi/10.1080/14017430410004632&rft_dat=%3Cproquest_pubme%3E68478994%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68478994&rft_id=info:pmid/16097409&rfr_iscdi=true