Loading…
EC-coupling in normal and failing hearts
Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known,...
Saved in:
Published in: | International journal of food sciences and nutrition 2005-04, Vol.39 (1-2), p.13-23 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3 |
container_end_page | 23 |
container_issue | 1-2 |
container_start_page | 13 |
container_title | International journal of food sciences and nutrition |
container_volume | 39 |
creator | Birkeland, Jon Arne Sejersted, Ole M. Taraldsen, Tore Sjaastad, Ivar |
description | Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models. |
doi_str_mv | 10.1080/14017430410004632 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_informahealthcare_journals_10_1080_14017430410004632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68478994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMotlYfwI3MStyMJs2dZIJupNQfKLjRdcjMJHZKJqnJDNK3N7UFEcFVLuF8H_cehM4Jvia4xDcEMOFAMRCMMTA6PUBjAqzIKfDyEI2xYDTnULIROolxlSBScH6MRoRhwQGLMbqaz_LaD2vbuvesdZnzoVM2U67JjGq_f5dahT6eoiOjbNRn-3eC3h7mr7OnfPHy-Dy7X-Q1AO_zpmwIZaIEM1VFJTTQwggocM1KowUmmqiKYABNoSpwUxsjpiaNXBTEMKPpBF3uetfBfww69rJrY62tVU77IUpWptuEgASSHVgHH2PQRq5D26mwkQTLrR75R0_KXOzLh6rTzU9i7yMBdzugdWZr4tMH28hebawPJihXt1HS__pvf8WTOtsvaxW0XPkhuCTun-2-AKrrgtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68478994</pqid></control><display><type>article</type><title>EC-coupling in normal and failing hearts</title><source>Taylor and Francis Science and Technology Collection</source><source>SPORTDiscus</source><creator>Birkeland, Jon Arne ; Sejersted, Ole M. ; Taraldsen, Tore ; Sjaastad, Ivar</creator><creatorcontrib>Birkeland, Jon Arne ; Sejersted, Ole M. ; Taraldsen, Tore ; Sjaastad, Ivar</creatorcontrib><description>Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models.</description><identifier>ISSN: 0963-7486</identifier><identifier>ISSN: 1401-7431</identifier><identifier>EISSN: 1465-3478</identifier><identifier>EISSN: 1651-2006</identifier><identifier>DOI: 10.1080/14017430410004632</identifier><identifier>PMID: 16097409</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>Action Potentials ; Animals ; Calcium Signaling ; Calcium-Transporting ATPases - metabolism ; Electrophysiology ; excitation-contraction coupling ; Female ; Heart failure ; Heart Failure - etiology ; Heart Failure - physiopathology ; Humans ; Male ; Myocardial Contraction - physiology ; myocardial failure ; Myocytes, Cardiac - cytology ; Sarcoplasmic Reticulum - physiology ; Sensitivity and Specificity ; Sodium-Calcium Exchanger - metabolism ; Ventricular Dysfunction, Left - etiology ; Ventricular Dysfunction, Left - physiopathology</subject><ispartof>International journal of food sciences and nutrition, 2005-04, Vol.39 (1-2), p.13-23</ispartof><rights>2005 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</citedby><cites>FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16097409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birkeland, Jon Arne</creatorcontrib><creatorcontrib>Sejersted, Ole M.</creatorcontrib><creatorcontrib>Taraldsen, Tore</creatorcontrib><creatorcontrib>Sjaastad, Ivar</creatorcontrib><title>EC-coupling in normal and failing hearts</title><title>International journal of food sciences and nutrition</title><addtitle>Scand Cardiovasc J</addtitle><description>Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Calcium Signaling</subject><subject>Calcium-Transporting ATPases - metabolism</subject><subject>Electrophysiology</subject><subject>excitation-contraction coupling</subject><subject>Female</subject><subject>Heart failure</subject><subject>Heart Failure - etiology</subject><subject>Heart Failure - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Myocardial Contraction - physiology</subject><subject>myocardial failure</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Sarcoplasmic Reticulum - physiology</subject><subject>Sensitivity and Specificity</subject><subject>Sodium-Calcium Exchanger - metabolism</subject><subject>Ventricular Dysfunction, Left - etiology</subject><subject>Ventricular Dysfunction, Left - physiopathology</subject><issn>0963-7486</issn><issn>1401-7431</issn><issn>1465-3478</issn><issn>1651-2006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMotlYfwI3MStyMJs2dZIJupNQfKLjRdcjMJHZKJqnJDNK3N7UFEcFVLuF8H_cehM4Jvia4xDcEMOFAMRCMMTA6PUBjAqzIKfDyEI2xYDTnULIROolxlSBScH6MRoRhwQGLMbqaz_LaD2vbuvesdZnzoVM2U67JjGq_f5dahT6eoiOjbNRn-3eC3h7mr7OnfPHy-Dy7X-Q1AO_zpmwIZaIEM1VFJTTQwggocM1KowUmmqiKYABNoSpwUxsjpiaNXBTEMKPpBF3uetfBfww69rJrY62tVU77IUpWptuEgASSHVgHH2PQRq5D26mwkQTLrR75R0_KXOzLh6rTzU9i7yMBdzugdWZr4tMH28hebawPJihXt1HS__pvf8WTOtsvaxW0XPkhuCTun-2-AKrrgtI</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Birkeland, Jon Arne</creator><creator>Sejersted, Ole M.</creator><creator>Taraldsen, Tore</creator><creator>Sjaastad, Ivar</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050401</creationdate><title>EC-coupling in normal and failing hearts</title><author>Birkeland, Jon Arne ; Sejersted, Ole M. ; Taraldsen, Tore ; Sjaastad, Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Calcium Signaling</topic><topic>Calcium-Transporting ATPases - metabolism</topic><topic>Electrophysiology</topic><topic>excitation-contraction coupling</topic><topic>Female</topic><topic>Heart failure</topic><topic>Heart Failure - etiology</topic><topic>Heart Failure - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Myocardial Contraction - physiology</topic><topic>myocardial failure</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Sarcoplasmic Reticulum - physiology</topic><topic>Sensitivity and Specificity</topic><topic>Sodium-Calcium Exchanger - metabolism</topic><topic>Ventricular Dysfunction, Left - etiology</topic><topic>Ventricular Dysfunction, Left - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkeland, Jon Arne</creatorcontrib><creatorcontrib>Sejersted, Ole M.</creatorcontrib><creatorcontrib>Taraldsen, Tore</creatorcontrib><creatorcontrib>Sjaastad, Ivar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of food sciences and nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkeland, Jon Arne</au><au>Sejersted, Ole M.</au><au>Taraldsen, Tore</au><au>Sjaastad, Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EC-coupling in normal and failing hearts</atitle><jtitle>International journal of food sciences and nutrition</jtitle><addtitle>Scand Cardiovasc J</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>39</volume><issue>1-2</issue><spage>13</spage><epage>23</epage><pages>13-23</pages><issn>0963-7486</issn><issn>1401-7431</issn><eissn>1465-3478</eissn><eissn>1651-2006</eissn><abstract>Systolic heart failure may be due to too few cardiomyocytes, or to reduced contractile function of the heart cells. In the latter situation the myocardial function is impaired and this condition is called myocardial failure. The pathophysiological mechanism behind this cellular defect is not known, but Ca2+ handling is altered. Although the most important trigger of sarcoplasmatic reticulum (SR) Ca2+ release, the L-type Ca2+ current, seems to be unaltered, SR Ca2+ load is reduced in human heart failure. This could explain the reduced contractility observed in failing hearts. Three possible mechanisms have been suggested to explain the reduction in SR Ca2+ load. They are leak through the SR Ca2+ release channel (RyR), impaired SR Ca2+ ATPase (SERCA) function and increased Na+/Ca2+-exchanger (NCX) function. Leak through RyR is not consistently found. Increased NCX function is probably secondary to a change in Ca2+ handling, and thus not a primary mechanism, but blockade of the NCX might have therapeutic potential. Reduced SERCA function is probably a primary mechanism for the observed systolic dysfunction, and further insight is to be gained through studies in genetically modified models.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>16097409</pmid><doi>10.1080/14017430410004632</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-7486 |
ispartof | International journal of food sciences and nutrition, 2005-04, Vol.39 (1-2), p.13-23 |
issn | 0963-7486 1401-7431 1465-3478 1651-2006 |
language | eng |
recordid | cdi_informahealthcare_journals_10_1080_14017430410004632 |
source | Taylor and Francis Science and Technology Collection; SPORTDiscus |
subjects | Action Potentials Animals Calcium Signaling Calcium-Transporting ATPases - metabolism Electrophysiology excitation-contraction coupling Female Heart failure Heart Failure - etiology Heart Failure - physiopathology Humans Male Myocardial Contraction - physiology myocardial failure Myocytes, Cardiac - cytology Sarcoplasmic Reticulum - physiology Sensitivity and Specificity Sodium-Calcium Exchanger - metabolism Ventricular Dysfunction, Left - etiology Ventricular Dysfunction, Left - physiopathology |
title | EC-coupling in normal and failing hearts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EC-coupling%20in%20normal%20and%20failing%20hearts&rft.jtitle=International%20journal%20of%20food%20sciences%20and%20nutrition&rft.au=Birkeland,%20Jon%20Arne&rft.date=2005-04-01&rft.volume=39&rft.issue=1-2&rft.spage=13&rft.epage=23&rft.pages=13-23&rft.issn=0963-7486&rft.eissn=1465-3478&rft_id=info:doi/10.1080/14017430410004632&rft_dat=%3Cproquest_pubme%3E68478994%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-d8d136984f2a5b9e435f9450c68fe901e1ab1044e34b50dcff92f4b57951f6fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68478994&rft_id=info:pmid/16097409&rfr_iscdi=true |