Loading…

KCNH2 Gene Mutation: A Potential Link Between Epilepsy and Long QT-2 Syndrome

Long QT syndrome (LQTS) is closely associated with syncope, seizure, and sudden death but LQTS is frequently misdiagnosed as epilepsy. LQTS and epilepsy both belong to the group of ion channelopathies that manifest in the heart and brain. Therefore, genetic analysis of genes associated with potassiu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurogenetics 2012-09, Vol.26 (3-4), p.382-386
Main Authors: Zamorano-León, José J., Yañez, Rosa, Jaime, Gabriel, Rodriguez-Sierra, Pablo, Calatrava-Ledrado, Laura, Alvarez-Granada, Roman R., Mateos-Cáceres, Petra Jiménez, Macaya, Carlos, López-Farré, Antonio J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long QT syndrome (LQTS) is closely associated with syncope, seizure, and sudden death but LQTS is frequently misdiagnosed as epilepsy. LQTS and epilepsy both belong to the group of ion channelopathies that manifest in the heart and brain. Therefore, genetic analysis of genes associated with potassium and sodium homeostasis and electrical disorders may reveal a link between epilepsy and lethal cardiac arrhythmia. Here, the authors report a young woman who suffered recurrent seizure episodes and syncopes that occurred while walking and also during rest. She showed electroencephalogram abnormalities and a pathological prolonged QTc interval in electrocardiogram. The patient and the patient's asymptomatic family members underwent genetic screening of the three genes most frequently associated with LQTS: KCNQ1, KCNH2, and SCN5A. The patient and the family members did not show DNA alterations in the genes KCNQ1 and SCN5A associated with LQT-1 and LQT-3, respectively. However, the patient showed a de novo mutation 2587T→C in exon 10 of KCNH2 gene associated with LQT-2. The mutation caused a stop codon substitution (R863X) in the HERG channel, leading to a 296-amino acid deletion. The patient's asymptomatic relatives did not show the KCNH2 gene mutation. R863X alteration in HERG channel may be involved in both prolonged QTc interval and epilepsy. This fact raises the possibility that R863X alteration in KCNH2-encoded potassium channel may confer susceptibility for epilepsy and cardiac LQT-2 arrhythmia.
ISSN:0167-7063
1563-5260
DOI:10.3109/01677063.2012.674993