Loading…

Incorporation of tocopherol acetate-containing particles in acrylic bone cement

Acrylic bone cement (BC) is used in orthopaedic surgery to anchor cemented prostheses to bone. Association of antioxidant molecules to BC may suppress reactive species injury which contributes to implant failure. Tocopherol acetate (ATA)-loaded polymethylmethacrylate (PMMA) particles (ATA(PMMA)) wer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microencapsulation 2010-09, Vol.27 (6), p.533-541
Main Authors: Bettencourt, A., Florindo, H. F., Ferreira, I. F. S., Matos, A., Monteiro, J., Neves, C., Lopes, P., Calado, A., Castro, M., Almeida, A. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acrylic bone cement (BC) is used in orthopaedic surgery to anchor cemented prostheses to bone. Association of antioxidant molecules to BC may suppress reactive species injury which contributes to implant failure. Tocopherol acetate (ATA)-loaded polymethylmethacrylate (PMMA) particles (ATA(PMMA)) were prepared by single emulsion solvent evaporation technique and were incorporated into BC. An encapsulation efficiency of 84% (w/w) was obtained and drug release studies showed distinct ATA release profiles and mechanisms before and after particle incorporation into BC. Experimental data, analysed using first-order, Higuchi and Korsmeyer-Peppas models revealed that ATA was released from particles by a Fickian diffusion mechanism while a non-Fickian transport was observed upon particle incorporation in BC. There were no changes in the mechanical properties of BC specimens containing ATA(PMMA) particles, in contrast to what was observed when ATA was loaded directly into BC. Overall, ATA(PMMA) particles are potential carriers for the incorporation of an antioxidant drug into BC.
ISSN:0265-2048
1464-5246
DOI:10.3109/02652048.2010.484106