Loading…

Identification of Biomechanical Properties of the Cornea: The Ocular Response Analyzer

Purpose: Several methods have been devised for measuring geometric parameters of the cornea but, until now, the biomechanics of the cornea have been largely ignored. The relatively new Ocular Response Analyzer (ORA) provides such biomechanical information. In order to correctly interpret the underly...

Full description

Saved in:
Bibliographic Details
Published in:Current eye research 2012-07, Vol.37 (7), p.553-562
Main Authors: Terai, Naim, Raiskup, Frederik, Haustein, Michael, Pillunat, Lutz E., Spoerl, Eberhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: Several methods have been devised for measuring geometric parameters of the cornea but, until now, the biomechanics of the cornea have been largely ignored. The relatively new Ocular Response Analyzer (ORA) provides such biomechanical information. In order to correctly interpret the underlying biomechanics of ORA data, we review reported ORA measurements and provide a compendium of factors influencing these measurements, with discussion of possible explanations for ORA measurement results. Methods: This review comprised a literature search using "ocular response analyzer" and "ocular response analyser" as keywords. We reviewed and compared reported results from recent ORA studies so obtained, with an eye to understanding corneal biomechanics. Results: Several ORA biomechanical parameters of the cornea - corneal hysteresis (CH) and corneal resistant factor (CRF) - characterize the viscoelastic properties of the cornea, especially those of the ground substance. The impact on CH and CRF values of various independent factors, e.g. intraocular pressure (IOP), age, central corneal thickness (CCT), and corneal swelling, are discussed. The impact on CH and CRF of treatment-related structural changes of the cornea, i.e. those occurring after refractive surgical procedures, placement of intracorneal rings, and collagen crosslinking (CXL), as well as pathological changes of the cornea, e.g. those resulting from keratoconus, edema, and glaucoma, are discussed. Conclusions: Changes in CRF and CH may be reflective of structural changes in the ground substance of the cornea. Thus, ORA provides invaluable information for delineating biomechanical conditions pertaining to the cornea, with special regard to ocular diseases, e.g. keratoconus and glaucoma.
ISSN:0271-3683
1460-2202
DOI:10.3109/02713683.2012.669007