Loading…
Static magnetic field attenuates lipopolysaccharide-induced multiple organ failure: A histopathologic study in mice
Abstract Purpose: Previous studies demonstrated that static magnetic fields (SMF) were effective in down-regulating the expression of lipopolysaccharide (LPS)-induced inflammatory cytokines. The aim of this study was to provide histological evidence of SMF attenuating LPS-induced multiple organ fail...
Saved in:
Published in: | International journal of radiation biology 2015-02, Vol.91 (2), p.135-141 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Purpose: Previous studies demonstrated that static magnetic fields (SMF) were effective in down-regulating the expression of lipopolysaccharide (LPS)-induced inflammatory cytokines. The aim of this study was to provide histological evidence of SMF attenuating LPS-induced multiple organ failure (MOF).
Materials and methods: In this study, BALB/cByJNarl (5 weeks, weighing 20-25 g) mice were chosen as test subjects. The tested animals were challenged with 50 mg/kg LPS after they were exposed to a continuous SMF for 2 h. The survival rate and pathological changes in lungs, kidneys, and livers of the LPS- challenged mice were examined with and without SMF treatment. In addition, the effects of SMF exposure on body temperature control of the LPS-challenged mice were monitored.
Results: Our results showed that at 30 h the survival rate of LPS-challenged mice increased 3.6-fold (p < 0.05). In addition, 6 h after LPS injection, the average body temperature of SMF-exposed mice was 1.07°C lower than that of unexposed animals. Tissue biopsies demonstrated that SMF exposure reduced damage to the lungs, livers, and kidneys in the LPS-challenged mice.
Conclusions: SMF show potential as a viable prophylactic alternative for controlling LPS-induced MOF. |
---|---|
ISSN: | 0955-3002 1362-3095 |
DOI: | 10.3109/09553002.2015.959669 |