Loading…
Tyrosine kinase inhibitor resistance in chronic myeloid leukemia cell lines: investigating resistance pathways
Abstract There are three currently identified secondary resistance mechanisms observed in patients with chronic myeloid leukemia (CML) receiving tyrosine kinase inhibitors (TKIs). These are BCR-ABL kinase domain (KD) mutations, increased BCR-ABL expression, and overexpression of drug-efflux proteins...
Saved in:
Published in: | Leukemia & lymphoma 2011-11, Vol.52 (11), p.2139-2147 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
There are three currently identified secondary resistance mechanisms observed in patients with chronic myeloid leukemia (CML) receiving tyrosine kinase inhibitors (TKIs). These are BCR-ABL kinase domain (KD) mutations, increased BCR-ABL expression, and overexpression of drug-efflux proteins (ABCB1 and ABCG2). To investigate the interplay between these three modes of resistance, three CML blast crisis cell lines (K562, its ABCB1-overexpressing variant K562 Dox, and KU812) were cultured in gradually increasing concentrations of imatinib to 2 μM, or dasatinib to 200 nM. Eight imatinib- and two dasatinib-resistant cell lines were established. Two imatinib-resistant K562 lines both had increased BCR-ABL expression as the apparent mode of resistance. However, when a dasatinib-resistant K562 culture was generated we observed gradually increasing BCR-ABL expression which peaked prior to identification of the T315I mutation. BCR-ABL overexpression followed by mutation development was observed in a further 4/10 cell lines, each with different KD mutations. In contrast, three imatinib-resistant K562 Dox lines exhibited only a further increase in ABCB1 expression. All TKI-resistant cell lines generated had increased IC50 (dose of drug required to reduce phosphorylation of the adaptor protein p-Crkl by 50%) to imatinib, dasatinib, and nilotinib, regardless of which TKI was used to induce resistance. This suggests that currently available TKIs share the same susceptibilities to drug resistance. |
---|---|
ISSN: | 1042-8194 1029-2403 |
DOI: | 10.3109/10428194.2011.591013 |