Loading…
Practical identification of NARMAX models using radial basis functions
A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm co...
Saved in:
Published in: | International journal of control 1990-12, Vol.52 (6), p.1327-1350 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure. |
---|---|
ISSN: | 0020-7179 1366-5820 |
DOI: | 10.1080/00207179008953599 |