Loading…
Practical identification of NARMAX models using radial basis functions
A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm co...
Saved in:
Published in: | International journal of control 1990-12, Vol.52 (6), p.1327-1350 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03 |
container_end_page | 1350 |
container_issue | 6 |
container_start_page | 1327 |
container_title | International journal of control |
container_volume | 52 |
creator | CHEN, S. BILLINGS, S. A. COWAN, C. F. N. GRANT, P. M. |
description | A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure. |
doi_str_mv | 10.1080/00207179008953599 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207179008953599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25829270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG-96K066TRtAl6WxVVh_YMoeCtpmkikbdakRfbb29IVD-JpBt7vvWEeIacULihwuARIIKe5AOCCIRNij8woZlnMeAL7ZDbq8QgckqMQPgAoMk5nZPXkpeqsknVkK9121gx7Z10bORM9LJ7vF29R4ypdh6gPtn2PvKzsAJcy2BCZvlUjHI7JgZF10Ce7OSevq-uX5W28fry5Wy7WsUqzrIuFSjQzXCKiUBxA5SWlSQopCiowTSvMSp4ZqhE5q3ItqcRSs0GkaZUbwDk5n3I33n32OnRFY4PSdS1b7fpQJMO7IslHkE6g8i4Er02x8baRfltQKMbGij-NDZ6zXbgMQyHGy1bZ8GsUHGmesYG7mjjbGucb-eV8XRWd3NbO_5jw_zPf-858Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25829270</pqid></control><display><type>article</type><title>Practical identification of NARMAX models using radial basis functions</title><source>Taylor & Francis Engineering, Computing & Technology Archive 2014</source><creator>CHEN, S. ; BILLINGS, S. A. ; COWAN, C. F. N. ; GRANT, P. M.</creator><creatorcontrib>CHEN, S. ; BILLINGS, S. A. ; COWAN, C. F. N. ; GRANT, P. M.</creatorcontrib><description>A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.</description><identifier>ISSN: 0020-7179</identifier><identifier>EISSN: 1366-5820</identifier><identifier>DOI: 10.1080/00207179008953599</identifier><identifier>CODEN: IJCOAZ</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification</subject><ispartof>International journal of control, 1990-12, Vol.52 (6), p.1327-1350</ispartof><rights>Copyright Taylor & Francis Group, LLC 1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</citedby><cites>FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207179008953599$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207179008953599$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59861,60650</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19831765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, S.</creatorcontrib><creatorcontrib>BILLINGS, S. A.</creatorcontrib><creatorcontrib>COWAN, C. F. N.</creatorcontrib><creatorcontrib>GRANT, P. M.</creatorcontrib><title>Practical identification of NARMAX models using radial basis functions</title><title>International journal of control</title><description>A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><issn>0020-7179</issn><issn>1366-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG-96K066TRtAl6WxVVh_YMoeCtpmkikbdakRfbb29IVD-JpBt7vvWEeIacULihwuARIIKe5AOCCIRNij8woZlnMeAL7ZDbq8QgckqMQPgAoMk5nZPXkpeqsknVkK9121gx7Z10bORM9LJ7vF29R4ypdh6gPtn2PvKzsAJcy2BCZvlUjHI7JgZF10Ce7OSevq-uX5W28fry5Wy7WsUqzrIuFSjQzXCKiUBxA5SWlSQopCiowTSvMSp4ZqhE5q3ItqcRSs0GkaZUbwDk5n3I33n32OnRFY4PSdS1b7fpQJMO7IslHkE6g8i4Er02x8baRfltQKMbGij-NDZ6zXbgMQyHGy1bZ8GsUHGmesYG7mjjbGucb-eV8XRWd3NbO_5jw_zPf-858Mg</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>CHEN, S.</creator><creator>BILLINGS, S. A.</creator><creator>COWAN, C. F. N.</creator><creator>GRANT, P. M.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19901201</creationdate><title>Practical identification of NARMAX models using radial basis functions</title><author>CHEN, S. ; BILLINGS, S. A. ; COWAN, C. F. N. ; GRANT, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, S.</creatorcontrib><creatorcontrib>BILLINGS, S. A.</creatorcontrib><creatorcontrib>COWAN, C. F. N.</creatorcontrib><creatorcontrib>GRANT, P. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, S.</au><au>BILLINGS, S. A.</au><au>COWAN, C. F. N.</au><au>GRANT, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical identification of NARMAX models using radial basis functions</atitle><jtitle>International journal of control</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>52</volume><issue>6</issue><spage>1327</spage><epage>1350</epage><pages>1327-1350</pages><issn>0020-7179</issn><eissn>1366-5820</eissn><coden>IJCOAZ</coden><abstract>A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207179008953599</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7179 |
ispartof | International journal of control, 1990-12, Vol.52 (6), p.1327-1350 |
issn | 0020-7179 1366-5820 |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1080_00207179008953599 |
source | Taylor & Francis Engineering, Computing & Technology Archive 2014 |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Exact sciences and technology Modelling and identification |
title | Practical identification of NARMAX models using radial basis functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20identification%20of%20NARMAX%20models%20using%20radial%20basis%20functions&rft.jtitle=International%20journal%20of%20control&rft.au=CHEN,%20S.&rft.date=1990-12-01&rft.volume=52&rft.issue=6&rft.spage=1327&rft.epage=1350&rft.pages=1327-1350&rft.issn=0020-7179&rft.eissn=1366-5820&rft.coden=IJCOAZ&rft_id=info:doi/10.1080/00207179008953599&rft_dat=%3Cproquest_infor%3E25829270%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25829270&rft_id=info:pmid/&rfr_iscdi=true |