Loading…

Practical identification of NARMAX models using radial basis functions

A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm co...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control 1990-12, Vol.52 (6), p.1327-1350
Main Authors: CHEN, S., BILLINGS, S. A., COWAN, C. F. N., GRANT, P. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03
cites cdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03
container_end_page 1350
container_issue 6
container_start_page 1327
container_title International journal of control
container_volume 52
creator CHEN, S.
BILLINGS, S. A.
COWAN, C. F. N.
GRANT, P. M.
description A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.
doi_str_mv 10.1080/00207179008953599
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207179008953599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25829270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG-96K066TRtAl6WxVVh_YMoeCtpmkikbdakRfbb29IVD-JpBt7vvWEeIacULihwuARIIKe5AOCCIRNij8woZlnMeAL7ZDbq8QgckqMQPgAoMk5nZPXkpeqsknVkK9121gx7Z10bORM9LJ7vF29R4ypdh6gPtn2PvKzsAJcy2BCZvlUjHI7JgZF10Ce7OSevq-uX5W28fry5Wy7WsUqzrIuFSjQzXCKiUBxA5SWlSQopCiowTSvMSp4ZqhE5q3ItqcRSs0GkaZUbwDk5n3I33n32OnRFY4PSdS1b7fpQJMO7IslHkE6g8i4Er02x8baRfltQKMbGij-NDZ6zXbgMQyHGy1bZ8GsUHGmesYG7mjjbGucb-eV8XRWd3NbO_5jw_zPf-858Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25829270</pqid></control><display><type>article</type><title>Practical identification of NARMAX models using radial basis functions</title><source>Taylor &amp; Francis Engineering, Computing &amp; Technology Archive 2014</source><creator>CHEN, S. ; BILLINGS, S. A. ; COWAN, C. F. N. ; GRANT, P. M.</creator><creatorcontrib>CHEN, S. ; BILLINGS, S. A. ; COWAN, C. F. N. ; GRANT, P. M.</creatorcontrib><description>A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.</description><identifier>ISSN: 0020-7179</identifier><identifier>EISSN: 1366-5820</identifier><identifier>DOI: 10.1080/00207179008953599</identifier><identifier>CODEN: IJCOAZ</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification</subject><ispartof>International journal of control, 1990-12, Vol.52 (6), p.1327-1350</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</citedby><cites>FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207179008953599$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207179008953599$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59861,60650</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19831765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, S.</creatorcontrib><creatorcontrib>BILLINGS, S. A.</creatorcontrib><creatorcontrib>COWAN, C. F. N.</creatorcontrib><creatorcontrib>GRANT, P. M.</creatorcontrib><title>Practical identification of NARMAX models using radial basis functions</title><title>International journal of control</title><description>A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><issn>0020-7179</issn><issn>1366-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG-96K066TRtAl6WxVVh_YMoeCtpmkikbdakRfbb29IVD-JpBt7vvWEeIacULihwuARIIKe5AOCCIRNij8woZlnMeAL7ZDbq8QgckqMQPgAoMk5nZPXkpeqsknVkK9121gx7Z10bORM9LJ7vF29R4ypdh6gPtn2PvKzsAJcy2BCZvlUjHI7JgZF10Ce7OSevq-uX5W28fry5Wy7WsUqzrIuFSjQzXCKiUBxA5SWlSQopCiowTSvMSp4ZqhE5q3ItqcRSs0GkaZUbwDk5n3I33n32OnRFY4PSdS1b7fpQJMO7IslHkE6g8i4Er02x8baRfltQKMbGij-NDZ6zXbgMQyHGy1bZ8GsUHGmesYG7mjjbGucb-eV8XRWd3NbO_5jw_zPf-858Mg</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>CHEN, S.</creator><creator>BILLINGS, S. A.</creator><creator>COWAN, C. F. N.</creator><creator>GRANT, P. M.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19901201</creationdate><title>Practical identification of NARMAX models using radial basis functions</title><author>CHEN, S. ; BILLINGS, S. A. ; COWAN, C. F. N. ; GRANT, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, S.</creatorcontrib><creatorcontrib>BILLINGS, S. A.</creatorcontrib><creatorcontrib>COWAN, C. F. N.</creatorcontrib><creatorcontrib>GRANT, P. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, S.</au><au>BILLINGS, S. A.</au><au>COWAN, C. F. N.</au><au>GRANT, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical identification of NARMAX models using radial basis functions</atitle><jtitle>International journal of control</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>52</volume><issue>6</issue><spage>1327</spage><epage>1350</epage><pages>1327-1350</pages><issn>0020-7179</issn><eissn>1366-5820</eissn><coden>IJCOAZ</coden><abstract>A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207179008953599</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7179
ispartof International journal of control, 1990-12, Vol.52 (6), p.1327-1350
issn 0020-7179
1366-5820
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_00207179008953599
source Taylor & Francis Engineering, Computing & Technology Archive 2014
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Modelling and identification
title Practical identification of NARMAX models using radial basis functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20identification%20of%20NARMAX%20models%20using%20radial%20basis%20functions&rft.jtitle=International%20journal%20of%20control&rft.au=CHEN,%20S.&rft.date=1990-12-01&rft.volume=52&rft.issue=6&rft.spage=1327&rft.epage=1350&rft.pages=1327-1350&rft.issn=0020-7179&rft.eissn=1366-5820&rft.coden=IJCOAZ&rft_id=info:doi/10.1080/00207179008953599&rft_dat=%3Cproquest_infor%3E25829270%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-9c2e5f8a3339c800c7b1124043919344d36b86f1e3385d7ea1a3be591914d7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25829270&rft_id=info:pmid/&rfr_iscdi=true