Loading…
An adaptive sphere-fitting method for sequential tolerance control
The machining of complex parts typically involves a logical and chronological sequence of n operations on m machine tools. Because manufacturing datums cannot always match design constraints, some of the design specifications imposed on the part are usually satisfied by distinct subsets of the n ope...
Saved in:
Published in: | International journal of production research 2002-01, Vol.40 (12), p.2757-2767 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The machining of complex parts typically involves a logical and chronological sequence of n operations on m machine tools. Because manufacturing datums cannot always match design constraints, some of the design specifications imposed on the part are usually satisfied by distinct subsets of the n operations prescribed in the process plan. Conventional tolerance control specifies a fixed set point for each operation and a permissible variation about this set point to insure compliance with the specifications, whereas sequential tolerance control (STC) uses real-time measurement information at the completion of one stage to reposition the set point for subsequent operations. However, it has been shown that earlier sphere-fitting methods for STC can lead to inferior solutions when the process distributions are skewed. This paper introduces an extension of STC that uses an adaptive sphere-fitting method that significantly improves the yield in the presence of skewed distributions as well as significantly reducing the computational effort required by earlier probabilistic search methods. |
---|---|
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207540210137620 |