Loading…
Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain
The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy a...
Saved in:
Published in: | International journal of production research 2008-02, Vol.46 (3), p.753-770 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793 |
container_end_page | 770 |
container_issue | 3 |
container_start_page | 753 |
container_title | International journal of production research |
container_volume | 46 |
creator | Pan, J.C.-H. Yang, M.-F. |
description | The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models. |
doi_str_mv | 10.1080/00207540600898072 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207540600898072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31816788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</originalsourceid><addsrcrecordid>eNqFkE1LHTEUhkNpobfaH9BdKLS7qclkbiYBN0WqFQQ3FrpLz-SjjmSSa5LRjr_e3F6LoEgDIXDyPC8vB6EPlHyhRJADQlrSrzvCCRFSkL59hVaUcd6shfj5Gq22_00F2Fv0LucrUs9adCv06zQU-ztBsQaP4caGEtOCp2isz_h2LJfYzXd3C4YQZvDY2AmCwdu7m29SNLMuYwx4G1IzMOA8bzZ-wfoSxrCP3jjw2b5_ePfQj-NvF0ffm7Pzk9Ojr2eN7lhXGjcA9D0XVGqqmRiAECsca7UE4jrOWugMHbi0EoyEHpwwwyBAm7btnO0l20Ofd7m10fVsc1HTmLX1HoKNc1aMCsp7ISr48Ql4FecUajfVUsHXnLe0QnQH6RRzTtapTRonSIuiRG0Xrp4tvDqfHoIha_AuQdBjfhSlFB37W6DfcWNwMU1wG5M3qsDiY_onPUtX5U-p5uF_TfZywXsM16bn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218656621</pqid></control><display><type>article</type><title>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Pan, J.C.-H. ; Yang, M.-F.</creator><creatorcontrib>Pan, J.C.-H. ; Yang, M.-F.</creatorcontrib><description>The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540600898072</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied sciences ; Demand ; Exact sciences and technology ; Fuzzy numbers ; Fuzzy sets ; Integrated inventory ; Inventory control, production control. Distribution ; JIT ; Just in time ; Logistics ; Operational research and scientific management ; Operational research. Management science ; Studies ; Supply chain management ; Supply chains</subject><ispartof>International journal of production research, 2008-02, Vol.46 (3), p.753-770</ispartof><rights>Copyright Taylor & Francis Group, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</citedby><cites>FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19984388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, J.C.-H.</creatorcontrib><creatorcontrib>Yang, M.-F.</creatorcontrib><title>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</title><title>International journal of production research</title><description>The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models.</description><subject>Applied sciences</subject><subject>Demand</subject><subject>Exact sciences and technology</subject><subject>Fuzzy numbers</subject><subject>Fuzzy sets</subject><subject>Integrated inventory</subject><subject>Inventory control, production control. Distribution</subject><subject>JIT</subject><subject>Just in time</subject><subject>Logistics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Studies</subject><subject>Supply chain management</subject><subject>Supply chains</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LHTEUhkNpobfaH9BdKLS7qclkbiYBN0WqFQQ3FrpLz-SjjmSSa5LRjr_e3F6LoEgDIXDyPC8vB6EPlHyhRJADQlrSrzvCCRFSkL59hVaUcd6shfj5Gq22_00F2Fv0LucrUs9adCv06zQU-ztBsQaP4caGEtOCp2isz_h2LJfYzXd3C4YQZvDY2AmCwdu7m29SNLMuYwx4G1IzMOA8bzZ-wfoSxrCP3jjw2b5_ePfQj-NvF0ffm7Pzk9Ojr2eN7lhXGjcA9D0XVGqqmRiAECsca7UE4jrOWugMHbi0EoyEHpwwwyBAm7btnO0l20Ofd7m10fVsc1HTmLX1HoKNc1aMCsp7ISr48Ql4FecUajfVUsHXnLe0QnQH6RRzTtapTRonSIuiRG0Xrp4tvDqfHoIha_AuQdBjfhSlFB37W6DfcWNwMU1wG5M3qsDiY_onPUtX5U-p5uF_TfZywXsM16bn</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Pan, J.C.-H.</creator><creator>Yang, M.-F.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200802</creationdate><title>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</title><author>Pan, J.C.-H. ; Yang, M.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Demand</topic><topic>Exact sciences and technology</topic><topic>Fuzzy numbers</topic><topic>Fuzzy sets</topic><topic>Integrated inventory</topic><topic>Inventory control, production control. Distribution</topic><topic>JIT</topic><topic>Just in time</topic><topic>Logistics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Studies</topic><topic>Supply chain management</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, J.C.-H.</creatorcontrib><creatorcontrib>Yang, M.-F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, J.C.-H.</au><au>Yang, M.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</atitle><jtitle>International journal of production research</jtitle><date>2008-02</date><risdate>2008</risdate><volume>46</volume><issue>3</issue><spage>753</spage><epage>770</epage><pages>753-770</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models.</abstract><cop>London</cop><cop>Washington, DC</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207540600898072</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2008-02, Vol.46 (3), p.753-770 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1080_00207540600898072 |
source | EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection |
subjects | Applied sciences Demand Exact sciences and technology Fuzzy numbers Fuzzy sets Integrated inventory Inventory control, production control. Distribution JIT Just in time Logistics Operational research and scientific management Operational research. Management science Studies Supply chain management Supply chains |
title | Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20inventory%20models%20with%20fuzzy%20annual%20demand%20and%20fuzzy%20production%20rate%20in%20a%20supply%20chain&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Pan,%20J.C.-H.&rft.date=2008-02&rft.volume=46&rft.issue=3&rft.spage=753&rft.epage=770&rft.pages=753-770&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540600898072&rft_dat=%3Cproquest_infor%3E31816788%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218656621&rft_id=info:pmid/&rfr_iscdi=true |