Loading…

Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain

The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research 2008-02, Vol.46 (3), p.753-770
Main Authors: Pan, J.C.-H., Yang, M.-F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793
cites cdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793
container_end_page 770
container_issue 3
container_start_page 753
container_title International journal of production research
container_volume 46
creator Pan, J.C.-H.
Yang, M.-F.
description The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models.
doi_str_mv 10.1080/00207540600898072
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207540600898072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31816788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</originalsourceid><addsrcrecordid>eNqFkE1LHTEUhkNpobfaH9BdKLS7qclkbiYBN0WqFQQ3FrpLz-SjjmSSa5LRjr_e3F6LoEgDIXDyPC8vB6EPlHyhRJADQlrSrzvCCRFSkL59hVaUcd6shfj5Gq22_00F2Fv0LucrUs9adCv06zQU-ztBsQaP4caGEtOCp2isz_h2LJfYzXd3C4YQZvDY2AmCwdu7m29SNLMuYwx4G1IzMOA8bzZ-wfoSxrCP3jjw2b5_ePfQj-NvF0ffm7Pzk9Ojr2eN7lhXGjcA9D0XVGqqmRiAECsca7UE4jrOWugMHbi0EoyEHpwwwyBAm7btnO0l20Ofd7m10fVsc1HTmLX1HoKNc1aMCsp7ISr48Ql4FecUajfVUsHXnLe0QnQH6RRzTtapTRonSIuiRG0Xrp4tvDqfHoIha_AuQdBjfhSlFB37W6DfcWNwMU1wG5M3qsDiY_onPUtX5U-p5uF_TfZywXsM16bn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218656621</pqid></control><display><type>article</type><title>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Pan, J.C.-H. ; Yang, M.-F.</creator><creatorcontrib>Pan, J.C.-H. ; Yang, M.-F.</creatorcontrib><description>The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540600898072</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Demand ; Exact sciences and technology ; Fuzzy numbers ; Fuzzy sets ; Integrated inventory ; Inventory control, production control. Distribution ; JIT ; Just in time ; Logistics ; Operational research and scientific management ; Operational research. Management science ; Studies ; Supply chain management ; Supply chains</subject><ispartof>International journal of production research, 2008-02, Vol.46 (3), p.753-770</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</citedby><cites>FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19984388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, J.C.-H.</creatorcontrib><creatorcontrib>Yang, M.-F.</creatorcontrib><title>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</title><title>International journal of production research</title><description>The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models.</description><subject>Applied sciences</subject><subject>Demand</subject><subject>Exact sciences and technology</subject><subject>Fuzzy numbers</subject><subject>Fuzzy sets</subject><subject>Integrated inventory</subject><subject>Inventory control, production control. Distribution</subject><subject>JIT</subject><subject>Just in time</subject><subject>Logistics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Studies</subject><subject>Supply chain management</subject><subject>Supply chains</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LHTEUhkNpobfaH9BdKLS7qclkbiYBN0WqFQQ3FrpLz-SjjmSSa5LRjr_e3F6LoEgDIXDyPC8vB6EPlHyhRJADQlrSrzvCCRFSkL59hVaUcd6shfj5Gq22_00F2Fv0LucrUs9adCv06zQU-ztBsQaP4caGEtOCp2isz_h2LJfYzXd3C4YQZvDY2AmCwdu7m29SNLMuYwx4G1IzMOA8bzZ-wfoSxrCP3jjw2b5_ePfQj-NvF0ffm7Pzk9Ojr2eN7lhXGjcA9D0XVGqqmRiAECsca7UE4jrOWugMHbi0EoyEHpwwwyBAm7btnO0l20Ofd7m10fVsc1HTmLX1HoKNc1aMCsp7ISr48Ql4FecUajfVUsHXnLe0QnQH6RRzTtapTRonSIuiRG0Xrp4tvDqfHoIha_AuQdBjfhSlFB37W6DfcWNwMU1wG5M3qsDiY_onPUtX5U-p5uF_TfZywXsM16bn</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Pan, J.C.-H.</creator><creator>Yang, M.-F.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200802</creationdate><title>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</title><author>Pan, J.C.-H. ; Yang, M.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Demand</topic><topic>Exact sciences and technology</topic><topic>Fuzzy numbers</topic><topic>Fuzzy sets</topic><topic>Integrated inventory</topic><topic>Inventory control, production control. Distribution</topic><topic>JIT</topic><topic>Just in time</topic><topic>Logistics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Studies</topic><topic>Supply chain management</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, J.C.-H.</creatorcontrib><creatorcontrib>Yang, M.-F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, J.C.-H.</au><au>Yang, M.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain</atitle><jtitle>International journal of production research</jtitle><date>2008-02</date><risdate>2008</risdate><volume>46</volume><issue>3</issue><spage>753</spage><epage>770</epage><pages>753-770</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>The successful implementation of Just-in-time (JIT) production in today's supply chain environment requires a new spirit of cooperation between the buyer and the vendor. An integrated inventory model with such a consideration is based on the total cost optimization under a common stock policy and business formula. However, the supposition of known annual demand in most related literature may not be realistic. This paper proposes the inclusion of fuzzy annual demand and/or the production rate, and then employs the signed distance, a ranking method for fuzzy numbers, to find the estimate of the common total cost in the fuzzy sense, and subsequently derives the corresponding optimal buyer's quantity and the integer number of lots in which the items are delivered from the vendor to the purchaser. Numerical examples are provided to illustrate the results of proposed models.</abstract><cop>London</cop><cop>Washington, DC</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540600898072</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2008-02, Vol.46 (3), p.753-770
issn 0020-7543
1366-588X
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_00207540600898072
source EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection
subjects Applied sciences
Demand
Exact sciences and technology
Fuzzy numbers
Fuzzy sets
Integrated inventory
Inventory control, production control. Distribution
JIT
Just in time
Logistics
Operational research and scientific management
Operational research. Management science
Studies
Supply chain management
Supply chains
title Integrated inventory models with fuzzy annual demand and fuzzy production rate in a supply chain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20inventory%20models%20with%20fuzzy%20annual%20demand%20and%20fuzzy%20production%20rate%20in%20a%20supply%20chain&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Pan,%20J.C.-H.&rft.date=2008-02&rft.volume=46&rft.issue=3&rft.spage=753&rft.epage=770&rft.pages=753-770&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540600898072&rft_dat=%3Cproquest_infor%3E31816788%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-fbaa776819c1c38ba00e8f32c9a0f4632a4d1b69e9ad9a7af8dbb8acd224fe793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218656621&rft_id=info:pmid/&rfr_iscdi=true