Loading…
Robust stability conditions for polytopic systems
The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lya...
Saved in:
Published in: | International journal of systems science 2005-12, Vol.36 (15), p.961-973 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3 |
container_end_page | 973 |
container_issue | 15 |
container_start_page | 961 |
container_title | International journal of systems science |
container_volume | 36 |
creator | GRMAN, Lubomir ROSINOVA, Danica VESELY, Vojtech KOZAKOVA, Alena |
description | The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results. |
doi_str_mv | 10.1080/00207720500389592 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207720500389592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29041794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-AG-96K06-WoS8CKLX7AgiJ5LmqYQSZs1yaL993bZFQ8LepqBeZ534EXoHMMVBgnXAASEIMABqFRckQM0w6xiJadYHaLZ5l5OAD5GJym9AwDnBGYIv4RmnXKRsm6cd3ksTBhal10YUtGFWKyCH3NYOVOkMWXbp1N01Gmf7NluztHb_d3r4rFcPj88LW6XpWEgckkbrLiUpMO8q1hlsOgYZ7ZqgUgpqkrJhmpdaUWJnbaKmAZLJakwTdvY1tA5utzmrmL4WNuU694lY73Xgw3rVBMFDAvFJhBvQRNDStF29Sq6XsexxlBvyqn3ypmci124Tkb7LurBuPQrCipASDFxN1vODVMZvf4M0bd11qMP8Ueif70R_-p7Vp2_Mv0G85yItQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29041794</pqid></control><display><type>article</type><title>Robust stability conditions for polytopic systems</title><source>Taylor and Francis Science and Technology Collection</source><creator>GRMAN, Lubomir ; ROSINOVA, Danica ; VESELY, Vojtech ; KOZAKOVA, Alena</creator><creatorcontrib>GRMAN, Lubomir ; ROSINOVA, Danica ; VESELY, Vojtech ; KOZAKOVA, Alena</creatorcontrib><description>The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207720500389592</identifier><identifier>CODEN: IJSYA9</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; LMI conditions ; Lyapunov function ; Robust stability ; System theory</subject><ispartof>International journal of systems science, 2005-12, Vol.36 (15), p.961-973</ispartof><rights>Copyright Taylor & Francis Group, LLC 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</citedby><cites>FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17370787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRMAN, Lubomir</creatorcontrib><creatorcontrib>ROSINOVA, Danica</creatorcontrib><creatorcontrib>VESELY, Vojtech</creatorcontrib><creatorcontrib>KOZAKOVA, Alena</creatorcontrib><title>Robust stability conditions for polytopic systems</title><title>International journal of systems science</title><description>The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>LMI conditions</subject><subject>Lyapunov function</subject><subject>Robust stability</subject><subject>System theory</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-AG-96K06-WoS8CKLX7AgiJ5LmqYQSZs1yaL993bZFQ8LepqBeZ534EXoHMMVBgnXAASEIMABqFRckQM0w6xiJadYHaLZ5l5OAD5GJym9AwDnBGYIv4RmnXKRsm6cd3ksTBhal10YUtGFWKyCH3NYOVOkMWXbp1N01Gmf7NluztHb_d3r4rFcPj88LW6XpWEgckkbrLiUpMO8q1hlsOgYZ7ZqgUgpqkrJhmpdaUWJnbaKmAZLJakwTdvY1tA5utzmrmL4WNuU694lY73Xgw3rVBMFDAvFJhBvQRNDStF29Sq6XsexxlBvyqn3ypmci124Tkb7LurBuPQrCipASDFxN1vODVMZvf4M0bd11qMP8Ueif70R_-p7Vp2_Mv0G85yItQ</recordid><startdate>20051215</startdate><enddate>20051215</enddate><creator>GRMAN, Lubomir</creator><creator>ROSINOVA, Danica</creator><creator>VESELY, Vojtech</creator><creator>KOZAKOVA, Alena</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051215</creationdate><title>Robust stability conditions for polytopic systems</title><author>GRMAN, Lubomir ; ROSINOVA, Danica ; VESELY, Vojtech ; KOZAKOVA, Alena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>LMI conditions</topic><topic>Lyapunov function</topic><topic>Robust stability</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRMAN, Lubomir</creatorcontrib><creatorcontrib>ROSINOVA, Danica</creatorcontrib><creatorcontrib>VESELY, Vojtech</creatorcontrib><creatorcontrib>KOZAKOVA, Alena</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRMAN, Lubomir</au><au>ROSINOVA, Danica</au><au>VESELY, Vojtech</au><au>KOZAKOVA, Alena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stability conditions for polytopic systems</atitle><jtitle>International journal of systems science</jtitle><date>2005-12-15</date><risdate>2005</risdate><volume>36</volume><issue>15</issue><spage>961</spage><epage>973</epage><pages>961-973</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><coden>IJSYA9</coden><abstract>The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207720500389592</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7721 |
ispartof | International journal of systems science, 2005-12, Vol.36 (15), p.961-973 |
issn | 0020-7721 1464-5319 |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1080_00207720500389592 |
source | Taylor and Francis Science and Technology Collection |
subjects | Applied sciences Computer science control theory systems Control system synthesis Control theory. Systems Exact sciences and technology LMI conditions Lyapunov function Robust stability System theory |
title | Robust stability conditions for polytopic systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stability%20conditions%20for%20polytopic%20systems&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=GRMAN,%20Lubomir&rft.date=2005-12-15&rft.volume=36&rft.issue=15&rft.spage=961&rft.epage=973&rft.pages=961-973&rft.issn=0020-7721&rft.eissn=1464-5319&rft.coden=IJSYA9&rft_id=info:doi/10.1080/00207720500389592&rft_dat=%3Cproquest_infor%3E29041794%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29041794&rft_id=info:pmid/&rfr_iscdi=true |