Loading…

Robust stability conditions for polytopic systems

The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lya...

Full description

Saved in:
Bibliographic Details
Published in:International journal of systems science 2005-12, Vol.36 (15), p.961-973
Main Authors: GRMAN, Lubomir, ROSINOVA, Danica, VESELY, Vojtech, KOZAKOVA, Alena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3
cites cdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3
container_end_page 973
container_issue 15
container_start_page 961
container_title International journal of systems science
container_volume 36
creator GRMAN, Lubomir
ROSINOVA, Danica
VESELY, Vojtech
KOZAKOVA, Alena
description The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results.
doi_str_mv 10.1080/00207720500389592
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207720500389592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29041794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-AG-96K06-WoS8CKLX7AgiJ5LmqYQSZs1yaL993bZFQ8LepqBeZ534EXoHMMVBgnXAASEIMABqFRckQM0w6xiJadYHaLZ5l5OAD5GJym9AwDnBGYIv4RmnXKRsm6cd3ksTBhal10YUtGFWKyCH3NYOVOkMWXbp1N01Gmf7NluztHb_d3r4rFcPj88LW6XpWEgckkbrLiUpMO8q1hlsOgYZ7ZqgUgpqkrJhmpdaUWJnbaKmAZLJakwTdvY1tA5utzmrmL4WNuU694lY73Xgw3rVBMFDAvFJhBvQRNDStF29Sq6XsexxlBvyqn3ypmci124Tkb7LurBuPQrCipASDFxN1vODVMZvf4M0bd11qMP8Ueif70R_-p7Vp2_Mv0G85yItQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29041794</pqid></control><display><type>article</type><title>Robust stability conditions for polytopic systems</title><source>Taylor and Francis Science and Technology Collection</source><creator>GRMAN, Lubomir ; ROSINOVA, Danica ; VESELY, Vojtech ; KOZAKOVA, Alena</creator><creatorcontrib>GRMAN, Lubomir ; ROSINOVA, Danica ; VESELY, Vojtech ; KOZAKOVA, Alena</creatorcontrib><description>The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207720500389592</identifier><identifier>CODEN: IJSYA9</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; LMI conditions ; Lyapunov function ; Robust stability ; System theory</subject><ispartof>International journal of systems science, 2005-12, Vol.36 (15), p.961-973</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</citedby><cites>FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17370787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRMAN, Lubomir</creatorcontrib><creatorcontrib>ROSINOVA, Danica</creatorcontrib><creatorcontrib>VESELY, Vojtech</creatorcontrib><creatorcontrib>KOZAKOVA, Alena</creatorcontrib><title>Robust stability conditions for polytopic systems</title><title>International journal of systems science</title><description>The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>LMI conditions</subject><subject>Lyapunov function</subject><subject>Robust stability</subject><subject>System theory</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-AG-96K06-WoS8CKLX7AgiJ5LmqYQSZs1yaL993bZFQ8LepqBeZ534EXoHMMVBgnXAASEIMABqFRckQM0w6xiJadYHaLZ5l5OAD5GJym9AwDnBGYIv4RmnXKRsm6cd3ksTBhal10YUtGFWKyCH3NYOVOkMWXbp1N01Gmf7NluztHb_d3r4rFcPj88LW6XpWEgckkbrLiUpMO8q1hlsOgYZ7ZqgUgpqkrJhmpdaUWJnbaKmAZLJakwTdvY1tA5utzmrmL4WNuU694lY73Xgw3rVBMFDAvFJhBvQRNDStF29Sq6XsexxlBvyqn3ypmci124Tkb7LurBuPQrCipASDFxN1vODVMZvf4M0bd11qMP8Ueif70R_-p7Vp2_Mv0G85yItQ</recordid><startdate>20051215</startdate><enddate>20051215</enddate><creator>GRMAN, Lubomir</creator><creator>ROSINOVA, Danica</creator><creator>VESELY, Vojtech</creator><creator>KOZAKOVA, Alena</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051215</creationdate><title>Robust stability conditions for polytopic systems</title><author>GRMAN, Lubomir ; ROSINOVA, Danica ; VESELY, Vojtech ; KOZAKOVA, Alena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>LMI conditions</topic><topic>Lyapunov function</topic><topic>Robust stability</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRMAN, Lubomir</creatorcontrib><creatorcontrib>ROSINOVA, Danica</creatorcontrib><creatorcontrib>VESELY, Vojtech</creatorcontrib><creatorcontrib>KOZAKOVA, Alena</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRMAN, Lubomir</au><au>ROSINOVA, Danica</au><au>VESELY, Vojtech</au><au>KOZAKOVA, Alena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stability conditions for polytopic systems</atitle><jtitle>International journal of systems science</jtitle><date>2005-12-15</date><risdate>2005</risdate><volume>36</volume><issue>15</issue><spage>961</spage><epage>973</epage><pages>961-973</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><coden>IJSYA9</coden><abstract>The paper provides a survey of some recent robust stability conditions, their mutual comparisons, and presents new robust stability conditions for continuous- and discrete-time systems with convex polytopic uncertainty. Robust stability analysis is based on LMI conditions and parameter-dependent Lyapunov functions. The developed stability conditions are appropriate for output feedback design. Numerical examples thoroughly illustrate the power of the considered robust stability analysis methods and show which of them provides the less conservative results.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207720500389592</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7721
ispartof International journal of systems science, 2005-12, Vol.36 (15), p.961-973
issn 0020-7721
1464-5319
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_00207720500389592
source Taylor and Francis Science and Technology Collection
subjects Applied sciences
Computer science
control theory
systems
Control system synthesis
Control theory. Systems
Exact sciences and technology
LMI conditions
Lyapunov function
Robust stability
System theory
title Robust stability conditions for polytopic systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stability%20conditions%20for%20polytopic%20systems&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=GRMAN,%20Lubomir&rft.date=2005-12-15&rft.volume=36&rft.issue=15&rft.spage=961&rft.epage=973&rft.pages=961-973&rft.issn=0020-7721&rft.eissn=1464-5319&rft.coden=IJSYA9&rft_id=info:doi/10.1080/00207720500389592&rft_dat=%3Cproquest_infor%3E29041794%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-3b195882f15f646c17f454e6d028876698b3aa6a932eb3a62cb189837cbdbedc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29041794&rft_id=info:pmid/&rfr_iscdi=true