Loading…
Model reduction of general queueing networks
A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over t...
Saved in:
Published in: | International journal of systems science 1993-01, Vol.24 (1), p.183-192 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913 |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913 |
container_end_page | 192 |
container_issue | 1 |
container_start_page | 183 |
container_title | International journal of systems science |
container_volume | 24 |
creator | KU-MAHAMUD, KU RUHANA OTHMAN, ABU TALIB |
description | A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue. |
doi_str_mv | 10.1080/00207729308949479 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207729308949479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4556845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqXwA9gyMBK487clFlRRQCpigTlyHbsKpHGxE6H-e1IVWBDTDffenR4h5whXCBquASgoRQ0DbbjhyhyQCXLJS8HQHJLJbl-OAB6Tk5zfAEAIChNy-RRr3xbJ14Prm9gVMRQr3_lk2-Jj8INvulXR-f4zpvd8So6CbbM_-55T8jq_e5k9lIvn-8fZ7aJ0lNO-1E4Hzb3VoCR1IiyBBfCBcSOVW6JAjbUHicpricYZq5yljlMVJKuFQTYluL_rUsw5-VBtUrO2aVshVLvc6k_u6FzsnY3NzrYh2c41-VfkQkjNxYjd7LGmCzGt7djV1lVvt21MPw77_8sX_l1mKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model reduction of general queueing networks</title><source>Taylor & Francis Engineering, Computing & Technology Archive</source><creator>KU-MAHAMUD, KU RUHANA ; OTHMAN, ABU TALIB</creator><creatorcontrib>KU-MAHAMUD, KU RUHANA ; OTHMAN, ABU TALIB</creatorcontrib><description>A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207729308949479</identifier><identifier>CODEN: IJSYA9</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied sciences ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Queuing theory. Traffic theory</subject><ispartof>International journal of systems science, 1993-01, Vol.24 (1), p.183-192</ispartof><rights>Copyright Taylor & Francis Group, LLC 1993</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</citedby><cites>FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207729308949479$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207729308949479$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59901,60690</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4556845$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KU-MAHAMUD, KU RUHANA</creatorcontrib><creatorcontrib>OTHMAN, ABU TALIB</creatorcontrib><title>Model reduction of general queueing networks</title><title>International journal of systems science</title><description>A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Queuing theory. Traffic theory</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqXwA9gyMBK487clFlRRQCpigTlyHbsKpHGxE6H-e1IVWBDTDffenR4h5whXCBquASgoRQ0DbbjhyhyQCXLJS8HQHJLJbl-OAB6Tk5zfAEAIChNy-RRr3xbJ14Prm9gVMRQr3_lk2-Jj8INvulXR-f4zpvd8So6CbbM_-55T8jq_e5k9lIvn-8fZ7aJ0lNO-1E4Hzb3VoCR1IiyBBfCBcSOVW6JAjbUHicpricYZq5yljlMVJKuFQTYluL_rUsw5-VBtUrO2aVshVLvc6k_u6FzsnY3NzrYh2c41-VfkQkjNxYjd7LGmCzGt7djV1lVvt21MPw77_8sX_l1mKg</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>KU-MAHAMUD, KU RUHANA</creator><creator>OTHMAN, ABU TALIB</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930101</creationdate><title>Model reduction of general queueing networks</title><author>KU-MAHAMUD, KU RUHANA ; OTHMAN, ABU TALIB</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Queuing theory. Traffic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KU-MAHAMUD, KU RUHANA</creatorcontrib><creatorcontrib>OTHMAN, ABU TALIB</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KU-MAHAMUD, KU RUHANA</au><au>OTHMAN, ABU TALIB</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reduction of general queueing networks</atitle><jtitle>International journal of systems science</jtitle><date>1993-01-01</date><risdate>1993</risdate><volume>24</volume><issue>1</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><coden>IJSYA9</coden><abstract>A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207729308949479</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7721 |
ispartof | International journal of systems science, 1993-01, Vol.24 (1), p.183-192 |
issn | 0020-7721 1464-5319 |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1080_00207729308949479 |
source | Taylor & Francis Engineering, Computing & Technology Archive |
subjects | Applied sciences Exact sciences and technology Operational research and scientific management Operational research. Management science Queuing theory. Traffic theory |
title | Model reduction of general queueing networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reduction%20of%20general%20queueing%20networks&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=KU-MAHAMUD,%20KU%20RUHANA&rft.date=1993-01-01&rft.volume=24&rft.issue=1&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0020-7721&rft.eissn=1464-5319&rft.coden=IJSYA9&rft_id=info:doi/10.1080/00207729308949479&rft_dat=%3Cpascalfrancis_infor%3E4556845%3C/pascalfrancis_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |