Loading…

Model reduction of general queueing networks

A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of systems science 1993-01, Vol.24 (1), p.183-192
Main Authors: KU-MAHAMUD, KU RUHANA, OTHMAN, ABU TALIB
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913
cites cdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913
container_end_page 192
container_issue 1
container_start_page 183
container_title International journal of systems science
container_volume 24
creator KU-MAHAMUD, KU RUHANA
OTHMAN, ABU TALIB
description A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue.
doi_str_mv 10.1080/00207729308949479
format article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00207729308949479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4556845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqXwA9gyMBK487clFlRRQCpigTlyHbsKpHGxE6H-e1IVWBDTDffenR4h5whXCBquASgoRQ0DbbjhyhyQCXLJS8HQHJLJbl-OAB6Tk5zfAEAIChNy-RRr3xbJ14Prm9gVMRQr3_lk2-Jj8INvulXR-f4zpvd8So6CbbM_-55T8jq_e5k9lIvn-8fZ7aJ0lNO-1E4Hzb3VoCR1IiyBBfCBcSOVW6JAjbUHicpricYZq5yljlMVJKuFQTYluL_rUsw5-VBtUrO2aVshVLvc6k_u6FzsnY3NzrYh2c41-VfkQkjNxYjd7LGmCzGt7djV1lVvt21MPw77_8sX_l1mKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model reduction of general queueing networks</title><source>Taylor &amp; Francis Engineering, Computing &amp; Technology Archive</source><creator>KU-MAHAMUD, KU RUHANA ; OTHMAN, ABU TALIB</creator><creatorcontrib>KU-MAHAMUD, KU RUHANA ; OTHMAN, ABU TALIB</creatorcontrib><description>A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207729308949479</identifier><identifier>CODEN: IJSYA9</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Queuing theory. Traffic theory</subject><ispartof>International journal of systems science, 1993-01, Vol.24 (1), p.183-192</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1993</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</citedby><cites>FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207729308949479$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207729308949479$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59901,60690</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4556845$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KU-MAHAMUD, KU RUHANA</creatorcontrib><creatorcontrib>OTHMAN, ABU TALIB</creatorcontrib><title>Model reduction of general queueing networks</title><title>International journal of systems science</title><description>A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Queuing theory. Traffic theory</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqXwA9gyMBK487clFlRRQCpigTlyHbsKpHGxE6H-e1IVWBDTDffenR4h5whXCBquASgoRQ0DbbjhyhyQCXLJS8HQHJLJbl-OAB6Tk5zfAEAIChNy-RRr3xbJ14Prm9gVMRQr3_lk2-Jj8INvulXR-f4zpvd8So6CbbM_-55T8jq_e5k9lIvn-8fZ7aJ0lNO-1E4Hzb3VoCR1IiyBBfCBcSOVW6JAjbUHicpricYZq5yljlMVJKuFQTYluL_rUsw5-VBtUrO2aVshVLvc6k_u6FzsnY3NzrYh2c41-VfkQkjNxYjd7LGmCzGt7djV1lVvt21MPw77_8sX_l1mKg</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>KU-MAHAMUD, KU RUHANA</creator><creator>OTHMAN, ABU TALIB</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930101</creationdate><title>Model reduction of general queueing networks</title><author>KU-MAHAMUD, KU RUHANA ; OTHMAN, ABU TALIB</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Queuing theory. Traffic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KU-MAHAMUD, KU RUHANA</creatorcontrib><creatorcontrib>OTHMAN, ABU TALIB</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KU-MAHAMUD, KU RUHANA</au><au>OTHMAN, ABU TALIB</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reduction of general queueing networks</atitle><jtitle>International journal of systems science</jtitle><date>1993-01-01</date><risdate>1993</risdate><volume>24</volume><issue>1</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><coden>IJSYA9</coden><abstract>A method of model reduction using the universal maximum entropy algorithm in conjunction with Norton's theorem for queueing networks is proposed for the analysis of large G-type distributed closed queueing networks. This method is called Norton-Maximum Entropy (N-ME) and has an advantage over the direct application of universal maximum entropy whereby the parametric study of a subset of queueing centres of interest can be done repeatedly without solving the entire network. The complexity of the original system is reduced into a flow equivalent two-stage load dependent queue. The marginal probability density function and various performance parameters of the two-stage load dependent queue can be obtained by using the maximum entropy analysis of the GE(n)/GE(n)/I/N queue.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207729308949479</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7721
ispartof International journal of systems science, 1993-01, Vol.24 (1), p.183-192
issn 0020-7721
1464-5319
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_00207729308949479
source Taylor & Francis Engineering, Computing & Technology Archive
subjects Applied sciences
Exact sciences and technology
Operational research and scientific management
Operational research. Management science
Queuing theory. Traffic theory
title Model reduction of general queueing networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reduction%20of%20general%20queueing%20networks&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=KU-MAHAMUD,%20KU%20RUHANA&rft.date=1993-01-01&rft.volume=24&rft.issue=1&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0020-7721&rft.eissn=1464-5319&rft.coden=IJSYA9&rft_id=info:doi/10.1080/00207729308949479&rft_dat=%3Cpascalfrancis_infor%3E4556845%3C/pascalfrancis_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-8c8f84ea80762c5fb03f0ef34967cb15181de0617e8619c9a7ca2c427f63d5913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true