Loading…

MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR

A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o 2 semipermeable dense perovskite layer and a porous catalytic layer. The model is appli...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering communications 1995-05, Vol.134 (1), p.107-132
Main Authors: TSAI, CHUNG-YI, MA, YI HUA, MOSER, WILLIAM R., DIXON, ANTHONY G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93
cites cdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93
container_end_page 132
container_issue 1
container_start_page 107
container_title Chemical engineering communications
container_volume 134
creator TSAI, CHUNG-YI
MA, YI HUA
MOSER, WILLIAM R.
DIXON, ANTHONY G.
description A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o 2 semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,
doi_str_mv 10.1080/00986449508936326
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00986449508936326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00986449508936326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</originalsourceid><addsrcrecordid>eNp1kM1Kw0AcxBdRMFYfwNu-QHS__mkWvKzptg0kWUjTg6ew3SRQSRvZFKRvb0q9iXOZw8xvDoPQMyUvlMTklRAZR0JIILHkEWfRDQooRDwERugtCi55OBXgHj2M4ychlHNKA6Rzs9BZWqywKhZ4k-bbTFWpKbBZYoULU6QbU611masMJ6pS2UeVJjjX-XupCo1LrZLKlI_orrP92D79-gxtl7pK1mFmVmmistBxzk7hTs5dKxtg1ArpJLECCLiGgWMiJg6cg5aKuWOxhA7aRtqdiCkDaOikTvIZotdd54dx9G1Xf_n9wfpzTUl9-aH-88PEvF2Z_bEb_MF-D75v6pM994PvvD26_Vjz__EfLG1blQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</title><source>Taylor &amp; Francis Engineering, Computing &amp; Technology Archive</source><creator>TSAI, CHUNG-YI ; MA, YI HUA ; MOSER, WILLIAM R. ; DIXON, ANTHONY G.</creator><creatorcontrib>TSAI, CHUNG-YI ; MA, YI HUA ; MOSER, WILLIAM R. ; DIXON, ANTHONY G.</creatorcontrib><description>A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o 2 semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,</description><identifier>ISSN: 0098-6445</identifier><identifier>EISSN: 1563-5201</identifier><identifier>DOI: 10.1080/00986449508936326</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Catalytic membrane reactor ; Dense oxide membrane ; Methane oxyreforming ; Nonisothermal mathematical model ; Perovskite membrane ; Synthesis gas</subject><ispartof>Chemical engineering communications, 1995-05, Vol.134 (1), p.107-132</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</citedby><cites>FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00986449508936326$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00986449508936326$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59901,60690</link.rule.ids></links><search><creatorcontrib>TSAI, CHUNG-YI</creatorcontrib><creatorcontrib>MA, YI HUA</creatorcontrib><creatorcontrib>MOSER, WILLIAM R.</creatorcontrib><creatorcontrib>DIXON, ANTHONY G.</creatorcontrib><title>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</title><title>Chemical engineering communications</title><description>A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o 2 semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,</description><subject>Catalytic membrane reactor</subject><subject>Dense oxide membrane</subject><subject>Methane oxyreforming</subject><subject>Nonisothermal mathematical model</subject><subject>Perovskite membrane</subject><subject>Synthesis gas</subject><issn>0098-6445</issn><issn>1563-5201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AcxBdRMFYfwNu-QHS__mkWvKzptg0kWUjTg6ew3SRQSRvZFKRvb0q9iXOZw8xvDoPQMyUvlMTklRAZR0JIILHkEWfRDQooRDwERugtCi55OBXgHj2M4ychlHNKA6Rzs9BZWqywKhZ4k-bbTFWpKbBZYoULU6QbU611masMJ6pS2UeVJjjX-XupCo1LrZLKlI_orrP92D79-gxtl7pK1mFmVmmistBxzk7hTs5dKxtg1ArpJLECCLiGgWMiJg6cg5aKuWOxhA7aRtqdiCkDaOikTvIZotdd54dx9G1Xf_n9wfpzTUl9-aH-88PEvF2Z_bEb_MF-D75v6pM994PvvD26_Vjz__EfLG1blQ</recordid><startdate>19950501</startdate><enddate>19950501</enddate><creator>TSAI, CHUNG-YI</creator><creator>MA, YI HUA</creator><creator>MOSER, WILLIAM R.</creator><creator>DIXON, ANTHONY G.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950501</creationdate><title>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</title><author>TSAI, CHUNG-YI ; MA, YI HUA ; MOSER, WILLIAM R. ; DIXON, ANTHONY G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Catalytic membrane reactor</topic><topic>Dense oxide membrane</topic><topic>Methane oxyreforming</topic><topic>Nonisothermal mathematical model</topic><topic>Perovskite membrane</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSAI, CHUNG-YI</creatorcontrib><creatorcontrib>MA, YI HUA</creatorcontrib><creatorcontrib>MOSER, WILLIAM R.</creatorcontrib><creatorcontrib>DIXON, ANTHONY G.</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSAI, CHUNG-YI</au><au>MA, YI HUA</au><au>MOSER, WILLIAM R.</au><au>DIXON, ANTHONY G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</atitle><jtitle>Chemical engineering communications</jtitle><date>1995-05-01</date><risdate>1995</risdate><volume>134</volume><issue>1</issue><spage>107</spage><epage>132</epage><pages>107-132</pages><issn>0098-6445</issn><eissn>1563-5201</eissn><abstract>A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o 2 semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00986449508936326</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-6445
ispartof Chemical engineering communications, 1995-05, Vol.134 (1), p.107-132
issn 0098-6445
1563-5201
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_00986449508936326
source Taylor & Francis Engineering, Computing & Technology Archive
subjects Catalytic membrane reactor
Dense oxide membrane
Methane oxyreforming
Nonisothermal mathematical model
Perovskite membrane
Synthesis gas
title MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELING%20AND%20SIMULATION%20OF%20A%20NONISOTHERMAL%20CATALYTIC%20MEMBRANE%20REACTOR&rft.jtitle=Chemical%20engineering%20communications&rft.au=TSAI,%20CHUNG-YI&rft.date=1995-05-01&rft.volume=134&rft.issue=1&rft.spage=107&rft.epage=132&rft.pages=107-132&rft.issn=0098-6445&rft.eissn=1563-5201&rft_id=info:doi/10.1080/00986449508936326&rft_dat=%3Ccrossref_infor%3E10_1080_00986449508936326%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true