Loading…
MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR
A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o 2 semipermeable dense perovskite layer and a porous catalytic layer. The model is appli...
Saved in:
Published in: | Chemical engineering communications 1995-05, Vol.134 (1), p.107-132 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93 |
container_end_page | 132 |
container_issue | 1 |
container_start_page | 107 |
container_title | Chemical engineering communications |
container_volume | 134 |
creator | TSAI, CHUNG-YI MA, YI HUA MOSER, WILLIAM R. DIXON, ANTHONY G. |
description | A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o
2
semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor, |
doi_str_mv | 10.1080/00986449508936326 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_00986449508936326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00986449508936326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</originalsourceid><addsrcrecordid>eNp1kM1Kw0AcxBdRMFYfwNu-QHS__mkWvKzptg0kWUjTg6ew3SRQSRvZFKRvb0q9iXOZw8xvDoPQMyUvlMTklRAZR0JIILHkEWfRDQooRDwERugtCi55OBXgHj2M4ychlHNKA6Rzs9BZWqywKhZ4k-bbTFWpKbBZYoULU6QbU611masMJ6pS2UeVJjjX-XupCo1LrZLKlI_orrP92D79-gxtl7pK1mFmVmmistBxzk7hTs5dKxtg1ArpJLECCLiGgWMiJg6cg5aKuWOxhA7aRtqdiCkDaOikTvIZotdd54dx9G1Xf_n9wfpzTUl9-aH-88PEvF2Z_bEb_MF-D75v6pM994PvvD26_Vjz__EfLG1blQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</title><source>Taylor & Francis Engineering, Computing & Technology Archive</source><creator>TSAI, CHUNG-YI ; MA, YI HUA ; MOSER, WILLIAM R. ; DIXON, ANTHONY G.</creator><creatorcontrib>TSAI, CHUNG-YI ; MA, YI HUA ; MOSER, WILLIAM R. ; DIXON, ANTHONY G.</creatorcontrib><description>A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o
2
semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,</description><identifier>ISSN: 0098-6445</identifier><identifier>EISSN: 1563-5201</identifier><identifier>DOI: 10.1080/00986449508936326</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Catalytic membrane reactor ; Dense oxide membrane ; Methane oxyreforming ; Nonisothermal mathematical model ; Perovskite membrane ; Synthesis gas</subject><ispartof>Chemical engineering communications, 1995-05, Vol.134 (1), p.107-132</ispartof><rights>Copyright Taylor & Francis Group, LLC 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</citedby><cites>FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00986449508936326$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00986449508936326$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59901,60690</link.rule.ids></links><search><creatorcontrib>TSAI, CHUNG-YI</creatorcontrib><creatorcontrib>MA, YI HUA</creatorcontrib><creatorcontrib>MOSER, WILLIAM R.</creatorcontrib><creatorcontrib>DIXON, ANTHONY G.</creatorcontrib><title>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</title><title>Chemical engineering communications</title><description>A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o
2
semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,</description><subject>Catalytic membrane reactor</subject><subject>Dense oxide membrane</subject><subject>Methane oxyreforming</subject><subject>Nonisothermal mathematical model</subject><subject>Perovskite membrane</subject><subject>Synthesis gas</subject><issn>0098-6445</issn><issn>1563-5201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AcxBdRMFYfwNu-QHS__mkWvKzptg0kWUjTg6ew3SRQSRvZFKRvb0q9iXOZw8xvDoPQMyUvlMTklRAZR0JIILHkEWfRDQooRDwERugtCi55OBXgHj2M4ychlHNKA6Rzs9BZWqywKhZ4k-bbTFWpKbBZYoULU6QbU611masMJ6pS2UeVJjjX-XupCo1LrZLKlI_orrP92D79-gxtl7pK1mFmVmmistBxzk7hTs5dKxtg1ArpJLECCLiGgWMiJg6cg5aKuWOxhA7aRtqdiCkDaOikTvIZotdd54dx9G1Xf_n9wfpzTUl9-aH-88PEvF2Z_bEb_MF-D75v6pM994PvvD26_Vjz__EfLG1blQ</recordid><startdate>19950501</startdate><enddate>19950501</enddate><creator>TSAI, CHUNG-YI</creator><creator>MA, YI HUA</creator><creator>MOSER, WILLIAM R.</creator><creator>DIXON, ANTHONY G.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950501</creationdate><title>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</title><author>TSAI, CHUNG-YI ; MA, YI HUA ; MOSER, WILLIAM R. ; DIXON, ANTHONY G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Catalytic membrane reactor</topic><topic>Dense oxide membrane</topic><topic>Methane oxyreforming</topic><topic>Nonisothermal mathematical model</topic><topic>Perovskite membrane</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSAI, CHUNG-YI</creatorcontrib><creatorcontrib>MA, YI HUA</creatorcontrib><creatorcontrib>MOSER, WILLIAM R.</creatorcontrib><creatorcontrib>DIXON, ANTHONY G.</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSAI, CHUNG-YI</au><au>MA, YI HUA</au><au>MOSER, WILLIAM R.</au><au>DIXON, ANTHONY G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR</atitle><jtitle>Chemical engineering communications</jtitle><date>1995-05-01</date><risdate>1995</risdate><volume>134</volume><issue>1</issue><spage>107</spage><epage>132</epage><pages>107-132</pages><issn>0098-6445</issn><eissn>1563-5201</eissn><abstract>A two-dimensional nonisothermal mathematical model has been developed to simulate a tube-and-shell configuration, catalytic membrane reactor. The three-layer membrane consists of an inert large-pore support, an o
2
semipermeable dense perovskite layer and a porous catalytic layer. The model is applied to the simulation of the partial oxidation or methane to syngas (oxyreforming). The membrane reactor simultaneously supplies oxygen to the catalytic reaction along the reactor length, and separates oxygen from the air feed, using a dense perovskite layer which is a mixed conductor, thus allowing rapid oxygen permeation without the use of an external circuit. Two configurations of catalytic membrane reactors are simulated, for both bench-scale and industrial-scale conditions. Comparisons are made to the conventional fixed-bed reactor, and to membrane reactors which are isothermal, adiabatic or wall-cooled. The simulation results imply that the temperature rise in exothermic partial oxidation reactions may be mitigated substantially by the use of a dense membrane reactor,</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/00986449508936326</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-6445 |
ispartof | Chemical engineering communications, 1995-05, Vol.134 (1), p.107-132 |
issn | 0098-6445 1563-5201 |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1080_00986449508936326 |
source | Taylor & Francis Engineering, Computing & Technology Archive |
subjects | Catalytic membrane reactor Dense oxide membrane Methane oxyreforming Nonisothermal mathematical model Perovskite membrane Synthesis gas |
title | MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELING%20AND%20SIMULATION%20OF%20A%20NONISOTHERMAL%20CATALYTIC%20MEMBRANE%20REACTOR&rft.jtitle=Chemical%20engineering%20communications&rft.au=TSAI,%20CHUNG-YI&rft.date=1995-05-01&rft.volume=134&rft.issue=1&rft.spage=107&rft.epage=132&rft.pages=107-132&rft.issn=0098-6445&rft.eissn=1563-5201&rft_id=info:doi/10.1080/00986449508936326&rft_dat=%3Ccrossref_infor%3E10_1080_00986449508936326%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-b97ce9d521a49c90a4505cd25c2480c5cc5e147c2895f5ed9ab481255d1111f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |